Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SOUSA, Jorge Rodrigues de
LUCENA NETO, Francisco Dias
Citação
BMC INFECTIOUS DISEASES, v.18, article ID 576, 8p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Since macrophages are one of the major cell types involved in the Mycobacterium leprae immune response, roles of the M1 and M2 macrophage subpopulations have been well defined. However, the role of M4 macrophages in leprosy or other infectious diseases caused by mycobacteria has not yet been clearly characterized. This study aimed to investigate the presence and potential role of M4 macrophages in the immunopathology of leprosy. Methods: We analyzed the presence of M4 macrophage markers (CD68, MRP8, MMP7, IL-6, and TNF-alpha) in 33 leprosy skin lesion samples from 18 patients with tuberculoid leprosy and 15 with lepromatous leprosy by immunohistochemistry. Results: The M4 phenotype was more strongly expressed in patients with the lepromatous form of the disease, indicating that this subpopulation is less effective in the elimination of the bacillus and consequently is associated with the evolution to one of the multibacillary clinical forms of infection. Conclusion: M4 macrophages are one of the cell types involved in the microbial response to M. leprae and probably are less effective in controlling bacillus replication, contributing to the evolution to the lepromatous form of the disease.
Palavras-chave
Macrophage, Immunohistochemistry, Mycobacteria, Immunology
Referências
  1. [Anonymous], 2015, Wkly Epidemiol Rec, V91, P405
  2. [Anonymous], 2016, WKLY EPIDEMIOL REC, V92, P501
  3. Azevedo RSS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-17765-5
  4. Butcher MJ, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00044
  5. Chakraborti S, 2003, MOL CELL BIOCHEM, V253, P269, DOI 10.1023/A:1026028303196
  6. Chistiakov DA, 2015, J CELL MOL MED, V19, P1163, DOI 10.1111/jcmm.12591
  7. Colin S, 2014, IMMUNOL REV, V262, P153, DOI 10.1111/imr.12218
  8. De Paoli F, 2014, CIRC J, V78, P1775, DOI 10.1253/circj.CJ-14-0621
  9. Aardo TLD, 2016, MICROB PATHOGENESIS, V90, P64, DOI 10.1016/j.micpath.2015.11.019
  10. de Sousa JR, 2017, J CLIN PATHOL, V70, P521, DOI 10.1136/jclinpath-2016-204110
  11. de Sousa JR, 2017, ACTA TROP, V171, P74, DOI 10.1016/j.actatropica.2017.03.016
  12. Aarao TLD, 2014, MICROB PATHOGENESIS, V77, P66, DOI 10.1016/j.micpath.2014.10.005
  13. Dhiman R, 2014, J INFECT DIS, V209, P578, DOI 10.1093/infdis/jit495
  14. Elamin AA, 2012, J PATHOG, DOI 10.1155/2012/361374
  15. Erbel C, 2015, INT J CARDIOL, V186, P219, DOI 10.1016/j.ijcard.2015.03.151
  16. Erbel C, 2015, INNATE IMMUN-LONDON, V21, P255, DOI 10.1177/1753425914526461
  17. Gimblet C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134698
  18. He WC, 2012, J AM SOC NEPHROL, V23, P294, DOI 10.1681/ASN.2011050490
  19. Kaur G, 2017, FUTURE MICROBIOL, V12, P315, DOI 10.2217/fmb-2016-0173
  20. Kibbie J, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005808
  21. Ley K, 2011, ARTERIOSCL THROM VAS, V31, P1506, DOI 10.1161/ATVBAHA.110.221127
  22. Liberale L, 2017, THROMB HAEMOSTASIS, V117, P7, DOI 10.1160/TH16-08-0593
  23. Lu XJ, 2016, CURR MED CHEM, V23, P1926, DOI 10.2174/0929867323666160428105111
  24. Mattos KA, 2011, CELL MICROBIOL, V13, P259, DOI 10.1111/j.1462-5822.2010.01533.x
  25. Mills CD, 2012, CRIT REV IMMUNOL, V32, P463, DOI 10.1615/CritRevImmunol.v32.i6.10
  26. Mosser DM, 2008, NAT REV IMMUNOL, V8, P958, DOI 10.1038/nri2448
  27. Moura DF, 2012, EUR J IMMUNOL, V42, P2925, DOI 10.1002/eji.201142198
  28. Neal JW, 2016, J INFECTION, V73, P402, DOI 10.1016/j.jinf.2016.08.006
  29. Nikiforov N G, 2015, Patol Fiziol Eksp Ter, P128
  30. Ogawa R, 2013, J CELL MOL MED, V17, P817, DOI 10.1111/jcmm.12060
  31. Oksala NKJ, 2017, EUR J VASC ENDOVASC, V53, P632, DOI 10.1016/j.ejvs.2017.02.014
  32. Ouedraogo R, 2012, J PROTEOMICS, V75, P5523, DOI 10.1016/j.jprot.2012.07.046
  33. Pechkovsky DV, 2000, FEMS IMMUNOL MED MIC, V29, P27, DOI 10.1016/S0928-8244(00)00183-8
  34. Pruenster M, 2016, PHARMACOL THERAPEUT, V167, P120, DOI 10.1016/j.pharmthera.2016.07.015
  35. Ridley D S, 1966, Int J Lepr Other Mycobact Dis, V34, P255
  36. Saini C, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004592
  37. Schrezenmeier EV, 2017, ACTA PHYSIOL, V219, P554, DOI 10.1111/apha.12764
  38. Sica A, 2012, J CLIN INVEST, V122, P787, DOI 10.1172/JCI59643
  39. Silveira ED, 2015, J AM ACAD DERMATOL, V72, P729, DOI 10.1016/j.jaad.2014.11.023
  40. Quaresma JAS, 2012, MICROBES INFECT, V14, P696, DOI 10.1016/j.micinf.2012.02.010
  41. Sotto MN, 2017, FRONT IMMUNOL, V8, P1635
  42. Sousa JR, 2016, ACTA TROP, V157, P108, DOI [10.1016/j.actatropica.2016.01.008, DOI 10.1016/J.ACTATROPICA.2016.01.008]
  43. Talhari C, 2015, CLIN DERMATOL, V33, P26, DOI 10.1016/j.clindermatol.2014.07.002
  44. Wang N, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00614
  45. Zhu TH, 2017, AM J DERMATOPATH, V39, P296, DOI 10.1097/DAD.0000000000000698