Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients

Carregando...
Imagem de Miniatura
Citações na Scopus
561
Tipo de produção
article
Data de publicação
2018
Editora
CELL PRESS
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
KAHLES, Andre
LEHMANN, Kjong-Van
TOUSSAINT, Nora C.
HUSER, Matthias
STARK, Stefan G.
SACHSENBERG, Timo
STEGLE, Oliver
KOHLBACHER, Oliver
SANDER, Chris
RATSCH, Gunnar
Autor de Grupo de pesquisa
Canc Genome Atlas Res Network
Editores
Coordenadores
Organizadores
Citação
CANCER CELL, v.34, n.2, p.211-224.e6, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from 8,705 patients detects alternative splicing events and tumor variants by reanalyzing RNA and whole-exome sequencing data. Tumors have up to 30% more alternative splicing events than normal samples. Association analysis of somatic variants with alternative splicing events confirmed known trans associations with variants in SF3B1 and U2AF1 and identified additional trans-acting variants (e.g., TADA1, PPP2R1A). Many tumors have thousands of alternative splicing events not detectable in normal samples; on average, we identified approximate to 930 exon-exon junctions (""neojunctions'') in tumors not typically found in GTEx normals. From Clinical Proteomic Tumor Analysis Consortium data available for breast and ovarian tumor samples, we confirmed approximate to 1.7 neojunction- and approximate to 0.6 single nucleotide variant-derived peptides per tumor sample that are also predicted major histocompatibility complex-I binders (""putative neoantigens'').
Palavras-chave
Referências
  1. Agrawal S, 2006, HUM MOL GENET, V15, P777, DOI 10.1093/hmg/ddi492
  2. Aguet F, 2017, NATURE, V550, P204, DOI 10.1038/nature24277
  3. Alsafadi S, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10615
  4. Andreatta M, 2016, BIOINFORMATICS, V32, P511, DOI 10.1093/bioinformatics/btv639
  5. Barrett CL, 2015, P NATL ACAD SCI USA, V112, pE3050, DOI 10.1073/pnas.1508057112
  6. Bassani-Sternberg M, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13404
  7. Bjorklund SS, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05537-0
  8. Blum A, 2018, CELL, V173, P530, DOI 10.1016/j.cell.2018.03.059
  9. Brooks AN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087361
  10. Cartegni L, 2002, NAT REV GENET, V3, P285, DOI 10.1038/nrg775
  11. Celebi JT, 2000, HUM GENET, V107, P234
  12. Chen HJ, 2017, HUM MUTAT, V38, P1372, DOI 10.1002/humu.23288
  13. Chin L, 2008, NATURE, V455, P1061, DOI 10.1038/nature07385
  14. Chung CH, 2002, NAT GENET, V32, P533, DOI 10.1038/ng1038
  15. Climente-Gonzalez H, 2017, CELL REP, V20, P2215, DOI 10.1016/j.celrep.2017.08.012
  16. Clower CV, 2010, P NATL ACAD SCI USA, V107, P1894, DOI 10.1073/pnas.0914845107
  17. David CJ, 2010, NATURE, V463, P364, DOI 10.1038/nature08697
  18. Djebali S, 2012, NATURE, V489, P101, DOI 10.1038/nature11233
  19. Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635
  20. Edwards NJ, 2015, J PROTEOME RES, V14, P2707, DOI 10.1021/pr501254j
  21. Ellrott K, 2018, CELL SYST, V6, P271, DOI 10.1016/j.cels.2018.03.002
  22. Fonseca N.A., 2017, BIORXIV, DOI [10.1101/183889, DOI 10.1101/183889]
  23. Frampton GM, 2015, CANCER DISCOV, V5, P850, DOI 10.1158/2159-8290.CD-15-0285
  24. Furney SJ, 2013, CANCER DISCOV, V3, P1122, DOI 10.1158/2159-8290.CD-13-0330
  25. Futreal PA, 2001, NATURE, V409, P850, DOI 10.1038/35057046
  26. Gillet LC, 2012, MOL CELL PROTEOMICS, V11, DOI 10.1074/mcp.O111.016717
  27. Gong J, 2018, NUCLEIC ACIDS RES, V46, pD971, DOI 10.1093/nar/gkx861
  28. Graubert TA, 2012, NAT GENET, V44, P53, DOI 10.1038/ng.1031
  29. Greenman C, 2007, NATURE, V446, P153, DOI 10.1038/nature05610
  30. Hatje K, 2017, MOL SYST BIOL, V13, DOI 10.15252/msb.20177728
  31. Hoadley KA, 2014, CELL, V158, P929, DOI 10.1016/j.cell.2014.06.049
  32. Kahles A, 2016, BIOINFORMATICS, V32, P1840, DOI 10.1093/bioinformatics/btw076
  33. Kohlbacher O, 2007, BIOINFORMATICS, V23, pE191, DOI 10.1093/bioinformatics/btl299
  34. Kovacevic Z, 2011, CARCINOGENESIS, V32, P732, DOI 10.1093/carcin/bgr046
  35. LeFave CV, 2011, EMBO J, V30, P4084, DOI 10.1038/emboj.2011.259
  36. Lehmann Kjong-Van, 2015, Pac Symp Biocomput, P44
  37. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  38. Li QY, 2013, CELL, V152, P633, DOI 10.1016/j.cell.2012.12.034
  39. Li Y, 2017, CANCER LETT, V393, P40, DOI 10.1016/j.canlet.2017.02.016
  40. Lippert C., 2014, BIORXIV, DOI [10.1101/003905, DOI 10.1101/003905]
  41. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  42. Meliso FM, 2017, HUM GENET, V136, P1129, DOI 10.1007/s00439-017-1819-2
  43. Mertins P, 2016, NATURE, V534, P55, DOI 10.1038/nature18003
  44. Muzny DM, 2012, NATURE, V487, P330, DOI 10.1038/nature11252
  45. Nellore A, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1118-6
  46. Okumura N, 2011, BIOCHEM BIOPH RES CO, V413, P395, DOI 10.1016/j.bbrc.2011.08.098
  47. Paik PK, 2015, CANCER DISCOV, V5, P842, DOI 10.1158/2159-8290.CD-14-1467
  48. Pece S, 2011, BBA-REV CANCER, V1815, P26, DOI 10.1016/j.bbcan.2010.10.001
  49. Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  50. Pickrell JK, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001236
  51. Robertson AG, 2018, CANCER CELL, V33, P151, DOI 10.1016/j.ccell.2017.12.013
  52. Rost HL, 2016, NAT METHODS, V13, P741, DOI [10.1038/NMETH.3959, 10.1038/nmeth.3959]
  53. Rossi D, 2011, BLOOD, V118, P6904, DOI 10.1182/blood-2011-08-373159
  54. Roy B, 2013, CURR GENOMICS, V14, P182, DOI 10.2174/1389202911314030004
  55. Saha A, 2017, GENOME RES, V27, P1843, DOI 10.1101/gr.216721.116
  56. Sayani S, 2008, MOL CELL, V31, P360, DOI 10.1016/j.molcel.2008.07.005
  57. Schafer Sebastian, 2015, Curr Protoc Hum Genet, V87, DOI 10.1002/0471142905.hg1116s87
  58. Sebestyen E, 2015, NUCLEIC ACIDS RES, V43, P1345, DOI 10.1093/nar/gku1392
  59. Shukla SA, 2015, NAT BIOTECHNOL, V33, P1152, DOI 10.1038/nbt.3344
  60. Srebrow A, 2006, J CELL SCI, V119, P2635, DOI 10.1242/jcs.03053
  61. Stephens PJ, 2011, CELL, V144, P27, DOI 10.1016/j.cell.2010.11.055
  62. Sun ZC, 2017, CANCER LETT, V392, P17, DOI 10.1016/j.canlet.2016.12.039
  63. Van der Auwera Geraldine A, 2013, Curr Protoc Bioinformatics, V43, DOI 10.1002/0471250953.bi1110s43
  64. van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
  65. Vauchy C, 2015, INT J CANCER, V137, P116, DOI 10.1002/ijc.29366
  66. Venables JP, 2009, NAT STRUCT MOL BIOL, V16, P670, DOI 10.1038/nsmb.1608
  67. Vitiello A, 2017, NAT BIOTECHNOL, V35, P815, DOI 10.1038/nbt.3932
  68. Wang ET, 2008, NATURE, V456, P470, DOI 10.1038/nature07509
  69. Wang XJ, 2018, MOL CELL PROTEOMICS, V17, P422, DOI 10.1074/mcp.RA117.000155
  70. Wang Y, 2014, CANCER CELL, V26, P374, DOI 10.1016/j.ccr.2014.07.010
  71. Wilks C., 2013, P AS PAC ADV NETW, V35, DOI [10.7125/APAN.35.1, DOI 10.7125/APAN.35.1]
  72. Yan H, 2009, NEW ENGL J MED, V360, P765, DOI 10.1056/NEJMoa0808710
  73. Yen KE, 2010, ONCOGENE, V29, P6409, DOI 10.1038/onc.2010.444
  74. Zhang H, 2016, CELL, V166, P755, DOI 10.1016/j.cell.2016.05.069
  75. Zhang XL, 2015, NAT GENET, V47, P345, DOI 10.1038/ng.3220
  76. Zhu JY, 2018, GYNECOL ONCOL, V148, P368, DOI 10.1016/j.ygyno.2017.11.028