A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples

Carregando...
Imagem de Miniatura
Citações na Scopus
198
Tipo de produção
article
Data de publicação
2018
Editora
CELL PRESS
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
CHEN, Han
LI, Chunyan
PENG, Xinxin
ZHOU, Zhicheng
WEINSTEIN, John N.
LIANG, Han
Autor de Grupo de pesquisa
Canc Genome Atlas Res Network
Editores
Coordenadores
Organizadores
Citação
CELL, v.173, n.2, p.386-399.e12, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The role of enhancers, a key class of non-coding regulatory DNA elements, in cancer development has increasingly been appreciated. Here, we present the detection and characterization of a large number of expressed enhancers in a genome-wide analysis of 8928 tumor samples across 33 cancer types using TCGA RNA-seq data. Compared with matched normal tissues, global enhancer activation was observed in most cancers. Across cancer types, global enhancer activity was positively associated with aneuploidy, but not mutation load, suggesting a hypothesis centered on ""chromatin-state'' to explain their interplay. Integrating eQTL, mRNA co-expression, and Hi-C data analysis, we developed a computational method to infer causal enhancer-gene interactions, revealing enhancers of clinically actionable genes. Having identified an enhancer similar to 140 kb downstream of PD-L1, a major immunotherapy target, we validated it experimentally. This study provides a systematic view of enhancer activity in diverse tumor contexts and suggests the clinical implications of enhancers.
Palavras-chave
Referências
  1. Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632
  2. Andersson R, 2014, NATURE, V507, P455, DOI 10.1038/nature12787
  3. Aran D, 2013, CELL, V154, P11, DOI 10.1016/j.cell.2013.06.018
  4. Blank M, 2012, NAT MED, V18, P227, DOI 10.1038/nm.2596
  5. Celona B, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001086
  6. Chakravarty D, 2017, JCO PRECIS ONCOL, V2017
  7. Chen H, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7367
  8. Cheng JH, 2015, SCI REP-UK, V5, DOI 10.1038/srep12648
  9. Ciriello G, 2013, NAT GENET, V45, P1127, DOI 10.1038/ng.2762
  10. De Santa F, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000384
  11. Dekker J, 2013, NAT REV GENET, V14, P390, DOI 10.1038/nrg3454
  12. Djebali S, 2012, NATURE, V489, P101, DOI 10.1038/nature11233
  13. Dunham I, 2012, NATURE, V489, P57, DOI 10.1038/nature11247
  14. Fudenberg G, 2011, NAT BIOTECHNOL, V29, P1109, DOI 10.1038/nbt.2049
  15. Futreal PA, 2004, NAT REV CANCER, V4, P177, DOI 10.1038/nrc1299
  16. Garraway LA, 2013, CELL, V153, P17, DOI 10.1016/j.cell.2013.03.002
  17. Gowrishankar K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123410
  18. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  19. He L, 2004, NAT REV GENET, V5, P522, DOI 10.1038/nrg1379
  20. Heintzman ND, 2007, NAT GENET, V39, P311, DOI 10.1038/ng1966
  21. Heinz S, 2015, NAT REV MOL CELL BIO, V16, P144, DOI 10.1038/nrm3949
  22. Hnisz D, 2013, CELL, V155, P934, DOI 10.1016/j.cell.2013.09.053
  23. Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089
  24. Jin FL, 2013, NATURE, V503, P290, DOI 10.1038/nature12644
  25. Kolch W, 2015, NAT REV CANCER, V15, P515, DOI 10.1038/nrc3983
  26. Kundaje A, 2015, NATURE, V518, P317, DOI 10.1038/nature14248
  27. Lappalainen T, 2013, NATURE, V501, P506, DOI 10.1038/nature12531
  28. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  29. Li J, 2015, CANCER RES, V75, P3728, DOI 10.1158/0008-5472.CAN-15-0273
  30. Li WB, 2016, NAT REV GENET, V17, P207, DOI 10.1038/nrg.2016.4
  31. Lu J, 2005, NATURE, V435, P834, DOI 10.1038/nature03702
  32. Monti S, 2003, MACH LEARN, V52, P91, DOI 10.1023/A:1023949509487
  33. Mootha VK, 2003, NAT GENET, V34, P267, DOI 10.1038/ng1180
  34. Murakawa Y, 2016, TRENDS GENET, V32, P76, DOI 10.1016/j.tig.2015.11.004
  35. Natoli G, 2012, ANNU REV GENET, V46, P1, DOI 10.1146/annurev-genet-110711-155459
  36. Park PJ, 2009, NAT REV GENET, V10, P669, DOI 10.1038/nrg2641
  37. Polak P, 2014, NAT BIOTECHNOL, V32, P71, DOI 10.1038/nbt.2778
  38. Probst AV, 2009, NAT REV MOL CELL BIO, V10, P192, DOI 10.1038/nrm2640
  39. Puissant A, 2014, CANCER CELL, V25, P226, DOI 10.1016/j.ccr.2014.01.022
  40. Rao SSP, 2014, CELL, V159, P1665, DOI 10.1016/j.cell.2014.11.021
  41. Ren B, 2010, NATURE, V465, P173, DOI 10.1038/465173a
  42. Schmitt AD, 2016, NAT REV MOL CELL BIO, V17, P743, DOI 10.1038/nrm.2016.104
  43. Schuster-Bockler B, 2012, NATURE, V488, P504, DOI 10.1038/nature11273
  44. Schwab M., 2009, ENCY CANC
  45. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  46. Topalian SL, 2016, NAT REV CANCER, V16, P275, DOI 10.1038/nrc.2016.36
  47. Weinstein JN, 2013, NAT GENET, V45, P1113, DOI 10.1038/ng.2764
  48. Wilkerson MD, 2010, BIOINFORMATICS, V26, P1572, DOI 10.1093/bioinformatics/btq170
  49. Yona AH, 2012, P NATL ACAD SCI USA, V109, P21010, DOI 10.1073/pnas.1211150109
  50. Yu Y, 2015, CANCER CELL, V28, P82, DOI 10.1016/j.ccell.2015.05.009
  51. Yuan Y, 2016, CANCER CELL, V29, P711, DOI 10.1016/j.ccell.2016.04.001
  52. Yuen BTK, 2013, CANCER CELL, V24, P567, DOI 10.1016/j.ccr.2013.09.015
  53. Zhang XY, 2016, NAT GENET, V48, P176, DOI 10.1038/ng.3470