Driver Fusions and Their Implications in the Development and Treatment of Human Cancers

Carregando...
Imagem de Miniatura
Citações na Scopus
375
Tipo de produção
article
Data de publicação
2018
Editora
CELL PRESS
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
GAO, Qingsong
LIANG, Wen-Wei
FOLTZ, Steven M.
MUTHARASU, Gnanavel
JAYASINGHE, Reyka G.
CAO, Song
LIAO, Wen-Wei
REYNOLDS, Sheila M.
WYCZALKOWSKI, Matthew A.
YAO, Lijun
Autor de Grupo de pesquisa
Fusion Anal Working Grp
Canc Genome Atlas Res Network
Editores
Coordenadores
Organizadores
Citação
CELL REPORTS, v.23, n.1, p.227-238.e3, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy.
Palavras-chave
Referências
  1. Andreatta M, 2016, BIOINFORMATICS, V32, P511, DOI 10.1093/bioinformatics/btv639
  2. Babiceanu M, 2016, NUCLEIC ACIDS RES, V44, P2859, DOI 10.1093/nar/gkw032
  3. Bailey M. H., 2018, CELL, V173
  4. Bass AJ, 2011, NAT GENET, V43, P964, DOI 10.1038/ng.936
  5. Benelli M, 2012, BIOINFORMATICS, V28, P3232, DOI 10.1093/bioinformatics/bts617
  6. Bobisse S, 2016, ANN TRANSL MED, V4, DOI 10.21037/atm.2016.06.17
  7. Boyle AP, 2008, CELL, V132, P311, DOI 10.1016/j.cell.2007.12.014
  8. Burk RD, 2017, NATURE, V543, P378, DOI 10.1038/nature21386
  9. Cao S, 2016, SCI REP-UK, V6, DOI 10.1038/srep28294
  10. Chang J, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15290
  11. Cilloni D, 2012, CLIN CANCER RES, V18, P930, DOI 10.1158/1078-0432.CCR-10-1613
  12. Dinh TA, 2017, SCI REP-UK, V7, DOI 10.1038/srep44653
  13. Ellrott K, 2018, CELL SYST, V6, P271, DOI 10.1016/j.cels.2018.03.002
  14. Getz G, 2013, NATURE, V497, P67, DOI 10.1038/nature12113
  15. Giacomini CP, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003464
  16. Haferlach C, 2010, LEUKEMIA, V24, P1065, DOI 10.1038/leu.2010.22
  17. Hantschel Oliver, 2012, Genes Cancer, V3, P436, DOI 10.1177/1947601912458584
  18. Hass B., 2017, BIORXIV
  19. Hornbeck PV, 2015, NUCLEIC ACIDS RES, V43, pD512, DOI 10.1093/nar/gku1267
  20. Hu X, 2018, NUCLEIC ACIDS RES, V46, pD1144, DOI 10.1093/nar/gkx1018
  21. Jones DTW, 2008, CANCER RES, V68, P8673, DOI 10.1158/0008-5472.CAN-08-2097
  22. Kanchi KL, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4156
  23. Kandoth C, 2013, NATURE, V502, P333, DOI 10.1038/nature12634
  24. Koboldt DC, 2012, NATURE, V490, P61, DOI 10.1038/nature11412
  25. Kumar-Sinha C, 2015, GENOME MED, V7, DOI 10.1186/s13073-015-0252-1
  26. Lasorella A, 2017, NEURO-ONCOLOGY, V19, P475, DOI 10.1093/neuonc/now240
  27. Lawrence MS, 2014, NATURE, V505, P495, DOI 10.1038/nature12912
  28. Lee M, 2017, NUCLEIC ACIDS RES, V45, pD784, DOI 10.1093/nar/gkw1083
  29. Ley TJ, 2013, NEW ENGL J MED, V368, P2059, DOI 10.1056/NEJMoa1301689
  30. Li SQ, 2013, CELL REP, V4, P1116, DOI 10.1016/j.celrep.2013.08.022
  31. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  32. Lu HY, 2017, CANCER RES, V77, P3502, DOI 10.1158/0008-5472.CAN-16-2745
  33. Manier S, 2017, NAT REV CLIN ONCOL, V14, P100, DOI 10.1038/nrclinonc.2016.122
  34. Mignone F, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-3-reviews0004
  35. Moniz S, 2010, CELL MOL LIFE SCI, V67, P1265, DOI 10.1007/s00018-010-0261-6
  36. Murphy C., 2016, BIORXIV
  37. Palanisamy N, 2010, NAT MED, V16, P793, DOI 10.1038/nm.2166
  38. Ren R, 2005, NAT REV CANCER, V5, P172, DOI 10.1038/nrc1567
  39. Sinclair A, 2013, BRIT J PHARMACOL, V169, P1693, DOI 10.1111/bph.12183
  40. Singh D, 2012, SCIENCE, V337, P1231, DOI 10.1126/science.1220834
  41. Smith I, 2007, LANCET, V369, P29, DOI 10.1016/S0140-6736(07)60028-2
  42. Stransky N, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5846
  43. Vogelstein B, 2013, SCIENCE, V339, P1546, DOI 10.1126/science.1235122
  44. von Massenhausen A, 2016, INT J CANCER, V139, P2359, DOI 10.1002/ijc.30279
  45. Wang LH, 2014, NATURE, V511, P241, DOI 10.1038/nature13296
  46. Weinstein JN, 2014, NATURE, V507, P315, DOI 10.1038/nature12965