Diabetes induces tri-methylation at lysine 9 of histone 3 at Slc2a4 gene in skeletal muscle: A new target to improve glycemic control

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
YONAMINE, Caio Y.
ALVES-WAGNER, Ana B.
V, Joao Esteves
OKAMOTO, Maristela M.
GIANNELLA-NETO, Daniel
MACHADO, Ubiratan F.
Citação
MOLECULAR AND CELLULAR ENDOCRINOLOGY, v.481, p.26-34, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Expression of the glucose transporter GLUT4, encoded by Slc2a4 gene, is reduced in both type 1 and type 2 diabetes (T1D and T2D), contributing to glycemic impairment. The present study investigated epigenetic regulations at the Slc2a4 promoter in skeletal muscle of T1D- and T2D-like experimental models. Slc2a4/GLUT4 repression was observed in T1D and T2D and that was reversed by insulin and resveratrol treatments, respectively. In both T1D-like and T2D-like animals, tri-methylation at lysine 9 of histone 3 (H3K9me3) increased in the Slc2a4 enhancer segment, whereas MEF2A/D binding into this segment was reduced; all effects were reversed by respective treatments. This study reveals that increased H3K9me3 in the Slc2a4 promoter enhancer segment contributes to reduce GLUT4 expression in skeletal muscle and to worse glycemic control in diabetes, pointing to the H3K9me3 of Slc2a4 promoter as a potential target for development of new approaches for treating diabetes.
Palavras-chave
Diabetes, GLUT4, Skeletal muscle, Histone post-translational modification, H3K9me3, H3Kac, MEF2A/D
Referências
  1. Alves-Wagner AB, 2014, DIABETOL METAB SYNDR, V6, DOI 10.1186/1758-5996-6-97
  2. Bannister AJ, 2011, CELL RES, V21, P381, DOI 10.1038/cr.2011.22
  3. Blattler SM, 2012, CELL METAB, V15, P505, DOI 10.1016/j.cmet.2012.03.008
  4. Canto C, 2009, NATURE, V458, P1056, DOI 10.1038/nature07813
  5. Cooke DW, 1999, BIOCHEM BIOPH RES CO, V260, P600, DOI 10.1006/bbrc.1999.0959
  6. Correa-Giannella ML, 2013, PHARMACOGENOMICS, V14, P847, DOI [10.2217/PGS.13.45, 10.2217/pgs.13.45]
  7. DJAZAYERY A, 1973, P NUTR SOC, V32, pA30
  8. Fontcuberta-PiSunyer M, 2018, BBA-GENE REGUL MECH, V1861, P473, DOI 10.1016/j.bbagrm.2018.03.003
  9. Furuya DT, 2010, METABOLISM, V59, P395, DOI 10.1016/j.metabol.2009.08.011
  10. Gaster M, 2001, DIABETES, V50, P1324, DOI 10.2337/diabetes.50.6.1324
  11. Gibney ER, 2010, HEREDITY, V105, P4, DOI 10.1038/hdy.2010.54
  12. Goh KP, 2014, INT J SPORT NUTR EXE, V24, P2, DOI 10.1123/ijsnem.2013-0045
  13. Gray S, 2002, J BIOL CHEM, V277, P34322, DOI 10.1074/jbc.M201304200
  14. Gut P, 2013, NATURE, V502, P489, DOI 10.1038/nature12752
  15. Herman MA, 2006, J CLIN INVEST, V116, P1767, DOI 10.1172/JCI129027
  16. Howlett KF, 2016, CLIN SCI, V130, P1051, DOI 10.1042/CS20160115
  17. Im SS, 2007, IUBMB LIFE, V59, P134, DOI 10.1080/15216540701313788
  18. Ito-Nagahata T, 2013, BIOSCI BIOTECH BIOCH, V77, P1229, DOI 10.1271/bbb.121000
  19. Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089
  20. Jeong K, 2015, NUCLEIC ACIDS RES, V43, P3114, DOI 10.1093/nar/gkv181
  21. Joost HG, 2002, AM J PHYSIOL-ENDOC M, V282, pE974, DOI 10.1152/ajpendo.00407.2001
  22. Khamzina L, 2005, ENDOCRINOLOGY, V146, P1473, DOI 10.1210/en.2004-0921
  23. Kirchner H, 2013, TRENDS CELL BIOL, V23, P203, DOI 10.1016/j.tcb.2012.11.008
  24. KOMEDA K, 1980, EXPERIENTIA, V36, P232, DOI 10.1007/BF01953751
  25. Kouzarides T, 2007, CELL, V128, P693, DOI 10.1016/j.cell.2007.02.005
  26. Kuo MH, 1999, METHODS, V19, P425, DOI 10.1006/meth.1999.0879
  27. Leturque A, 1996, DIABETES, V45, P23, DOI 10.2337/diabetes.45.1.23
  28. Lima GA, 2009, AM J PHYSIOL-ENDOC M, V296, pE132, DOI 10.1152/ajpendo.90548.2008
  29. MACHADO UF, 1993, HORM METAB RES, V25, P462, DOI 10.1055/s-2007-1002149
  30. Moraes PA, 2014, LIFE SCI, V114, P36, DOI 10.1016/j.lfs.2014.07.040
  31. MOSS D, 1985, METABOLISM, V34, P1094, DOI 10.1016/0026-0495(85)90152-0
  32. Mulligan P, 2011, MOL CELL, V42, P689, DOI 10.1016/j.molcel.2011.04.020
  33. NEMEROFF CB, 1977, ENDOCRINOLOGY, V101, P613, DOI 10.1210/endo-101-2-613
  34. OIDA K, 1984, INT J OBESITY, V8, P385
  35. Okamoto MM, 2011, J ENDOCRINOL, V211, P55, DOI 10.1530/JOE-11-0105
  36. Price NL, 2012, CELL METAB, V15, P675, DOI 10.1016/j.cmet.2012.04.003
  37. Santalucia T, 2001, J MOL BIOL, V314, P195, DOI 10.1006/jmbi.2001.5091
  38. Smith JAH, 2008, AM J PHYSIOL-ENDOC M, V295, pE698, DOI 10.1152/ajpendo.00747.2007
  39. Stentz Frankie B., 2007, Genomics Proteomics & Bioinformatics, V5, P216, DOI 10.1016/S1672-0229(08)60009-1
  40. Tang GJ, 2018, INT J ONCOL, V52, P1899, DOI 10.3892/ijo.2018.4343
  41. Tian Y, 2015, CANCER RES, V75, P4803, DOI 10.1158/0008-5472.CAN-14-3786
  42. Tsao TS, 1996, DIABETES, V45, P28, DOI 10.2337/diabetes.45.1.28
  43. Tsao TS, 1999, DIABETES, V48, P775, DOI 10.2337/diabetes.48.4.775
  44. Wan LX, 2018, MOL CELL, V69, P279, DOI 10.1016/j.molcel.2017.12.024
  45. Wang J, 2016, BRIT J NUTR, V116, P390, DOI 10.1017/S0007114516002166
  46. Yamatsugu K, 2018, CURR OPIN CHEM BIOL, V46, P10, DOI 10.1016/j.cbpa.2018.03.011
  47. Yan SF, 2014, CURR PHARM DESIGN, V20, P1604, DOI 10.2174/13816128113199990544
  48. Yonamine CY, 2017, MOLECULES, V22, DOI 10.3390/molecules22071180
  49. Yonamine CY, 2016, NUTR METAB, V13, DOI 10.1186/s12986-016-0103-0
  50. Zisman A, 2000, NAT MED, V6, P924, DOI 10.1038/78693
  51. Zorzano A, 2005, ACTA PHYSIOL SCAND, V183, P43, DOI 10.1111/j.1365-201X.2004.01380.x