Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury

Carregando...
Imagem de Miniatura
Citações na Scopus
71
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
Citação
EUROPEAN JOURNAL OF SPORT SCIENCE, v.19, n.1, Special Issue, p.1-14, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The ergogenic and therapeutic effects of increasing muscle creatine by supplementation are well-recognized. It appears that similar benefits to brain function and cognitive processing may also be achieved with creatine supplementation, however research in this area is more limited, and important knowledge gaps remain. The purpose of this review is to provide a comprehensive overview of the current state of knowledge about the influence of creatine supplementation on brain function in healthy individuals. It appears that brain creatine is responsive to supplementation, however higher, or more prolonged dosing strategies than those typically used to increase muscle creatine, may be required to elicit an increase in brain creatine. The optimal dosing strategy to induce this response, is currently unknown, and there is an urgent need for studies investigating this. When considering the influence of supplementation strategies on cognitive processes, it appears that creatine is most likely to exert an influence in situations whereby cognitive processes are stressed, e.g. during sleep deprivation, experimental hypoxia, or during the performance of more complex, and thus more cognitively demanding tasks. Evidence exists indicating that increased brain creatine may be effective at reducing the severity of, or enhancing recovery from mild traumatic brain injury, however, only limited data in humans are available to verify this hypothesis, thus representing an exciting area for further research.
Palavras-chave
Phosphorylcreatine, cerebral energy metabolism, dietary supplement, cognition, concussion
Referências
  1. Merege CAA, 2017, APPL PHYSIOL NUTR ME, V42, P128, DOI 10.1139/apnm-2016-0406
  2. Ainsley Dean Philip John, 2017, Concussion, V2, pCNC34, DOI 10.2217/cnc-2016-0016
  3. Allen PJ, 2012, NEUROSCI BIOBEHAV R, V36, P1442, DOI 10.1016/j.neubiorev.2012.03.005
  4. Andres RH, 2008, BRAIN RES BULL, V76, P329, DOI 10.1016/j.brainresbull.2008.02.035
  5. Barrett EC, 2014, ADV NUTR, V5, P268, DOI 10.3945/an.113.005280
  6. Beard E, 2010, J NEUROCHEM, V115, P297, DOI 10.1111/j.1471-4159.2010.06935.x
  7. Bender A, 2016, AMINO ACIDS, V48, P1929, DOI 10.1007/s00726-015-2165-0
  8. Benton D, 2011, BRIT J NUTR, V105, P1100, DOI 10.1017/S0007114510004733
  9. Braissant Olivier, 2007, V46, P67
  10. Branch JD, 2003, INT J SPORT NUTR EXE, V13, P198, DOI 10.1123/ijsnem.13.2.198
  11. Candow DG, 2014, ENDOCRINE, V45, P354, DOI 10.1007/s12020-013-0070-4
  12. Chilibeck PD, 2017, OPEN ACCESS J SPORTS, V8, P213, DOI 10.2147/OAJSM.S123529
  13. Cook CJ, 2011, J INT SOC SPORT NUTR, V8, DOI 10.1186/1550-2783-8-2
  14. Cox C, 2002, INT J SPORT NUTR EXE, V12, P33, DOI 10.1123/ijsnem.12.1.33
  15. Dechent P, 1999, AM J PHYSIOL-REG I, V277, pR698
  16. Devries MC, 2014, MED SCI SPORT EXER, V46, P1194, DOI 10.1249/MSS.0000000000000220
  17. Pereira RTD, 2015, J PHYSIOL-LONDON, V593, P3959, DOI 10.1113/JP270861
  18. Greenhaff PL, 2001, J PHYSIOL-LONDON, V537, P657
  19. GREENHAFF PL, 1993, CLIN SCI, V84, P565, DOI 10.1042/cs0840565
  20. Gualano B, 2016, AMINO ACIDS, V48, P1793, DOI 10.1007/s00726-016-2239-7
  21. Gualano B, 2012, AMINO ACIDS, V43, P519, DOI 10.1007/s00726-011-1132-7
  22. Gualano B, 2011, EUR J APPL PHYSIOL, V111, P749, DOI 10.1007/s00421-010-1676-3
  23. Gualano B, 2010, AMINO ACIDS, V38, P31, DOI 10.1007/s00726-009-0263-6
  24. Hammett ST, 2010, NEUROSCI LETT, V479, P201, DOI 10.1016/j.neulet.2010.05.054
  25. HARRIS RC, 1992, CLIN SCI, V83, P367, DOI 10.1042/cs0830367
  26. Hayashi AP, 2014, LUPUS, V23, P1500, DOI 10.1177/0961203314546017
  27. Heaton LE, 2017, SPORTS MED, V47, P2201, DOI 10.1007/s40279-017-0759-2
  28. Hellem TL, 2015, J DUAL DIAGN, V11, P189, DOI 10.1080/15504263.2015.1100471
  29. Hultman E, 1996, J APPL PHYSIOL, V81, P232
  30. Ipsiroglu OS, 2001, LIFE SCI, V69, P1805, DOI 10.1016/S0024-3205(01)01268-1
  31. Kaldis P, 1996, DEV NEUROSCI-BASEL, V18, P542, DOI 10.1159/000111452
  32. Kondo DG, 2016, AMINO ACIDS, V48, P1941, DOI 10.1007/s00726-016-2194-3
  33. Kondo DG, 2011, J AFFECT DISORDERS, V135, P354, DOI 10.1016/j.jad.2011.07.010
  34. Kreider RB, 2003, AM J PHYSIOL-REG I, V285, pR725, DOI 10.1152/ajpregu.00375.2003
  35. Kreider RB, 2017, J INT SOC SPORT NUTR, V14, DOI 10.1186/s12970-017-0173-z
  36. Laakso MP, 2003, J NEURAL TRANSM, V110, P267, DOI 10.1007/s00702-002-0783-7
  37. Ling J, 2009, BEHAV PHARMACOL, V20, P673, DOI 10.1097/FBP.0b013e3283323c2a
  38. Lugaresi R, 2013, J INT SOC SPORT NUTR, V10, DOI 10.1186/1550-2783-10-26
  39. Lukaszuk JM, 2005, J STRENGTH COND RES, V19, P735
  40. Lukaszuk JM, 2002, INT J SPORT NUTR EXE, V12, P336, DOI 10.1123/ijsnem.12.3.336
  41. Lyoo IK, 2003, PSYCHIAT RES-NEUROIM, V123, P87, DOI 10.1016/S0925-4927(03)00046-5
  42. McMorris T, 2007, PHYSIOL BEHAV, V90, P21, DOI 10.1016/j.physbeh.2006.08.024
  43. McMorris T, 2006, PSYCHOPHARMACOLOGY, V185, P93, DOI 10.1007/s00213-005-0269-z
  44. McMorris T, 2007, AGING NEUROPSYCHOL C, V14, P517, DOI 10.1080/13825580600788100
  45. Mohebbi H., 2012, Middle East Journal of Scientific Research, V12, P397
  46. Nicastro H, 2012, AMINO ACIDS, V42, P1695, DOI 10.1007/s00726-011-0871-9
  47. Ostojic SM, 2016, APPL PHYSIOL NUTR ME, V41, P1005, DOI 10.1139/apnm-2016-0178
  48. Pan JW, 2007, AM J PHYSIOL-REG I, V292, pR1745, DOI 10.1152/ajpregu.00717.2006
  49. Persky Adam M., 2007, V46, P275
  50. Rae C, 2003, P ROY SOC B-BIOL SCI, V270, P2147, DOI 10.1098/rspb.2003.2492
  51. Rae CD, 2015, NEUROCHEM INT, V89, P249, DOI 10.1016/j.neuint.2015.08.010
  52. Rawson ES, 2008, PHYSIOL BEHAV, V95, P130, DOI 10.1016/j.physbeh.2008.05.009
  53. Rawson ES, 2018, INT J SPORT NUTR EXE, V28, P188, DOI 10.1123/ijsnem.2017-0340
  54. Rawson ES, 2017, SPORTS MED, V47, pS33, DOI 10.1007/s40279-017-0689-z
  55. Rawson ES, 2011, AMINO ACIDS, V40, P1349, DOI 10.1007/s00726-011-0855-9
  56. Rawson ES, 2003, J STRENGTH COND RES, V17, P822
  57. Alves CRR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076301
  58. Sahlin K, 2011, AMINO ACIDS, V40, P1363, DOI 10.1007/s00726-011-0856-8
  59. Sakellaris G, 2006, J TRAUMA, V61, P322, DOI 10.1097/01.ta.0000230269.46108.d5
  60. Sakellaris G, 2008, ACTA PAEDIATR, V97, P31, DOI 10.1111/j.1651-2227.2007.00529.x
  61. Salomons GS, 2003, J INHERIT METAB DIS, V26, P309, DOI 10.1023/A:1024405821638
  62. Solis MY, 2017, J APPL PHYSIOL, V123, P407, DOI 10.1152/japplphysiol.00248.2017
  63. Solis MY, 2014, BRIT J NUTR, V111, P1272, DOI 10.1017/S0007114513003802
  64. Souza MA, 2012, AMINO ACIDS, V43, P2491, DOI 10.1007/s00726-012-1329-4
  65. STOCKLER S, 1994, PEDIATR RES, V36, P409
  66. Sullivan PG, 2000, ANN NEUROL, V48, P723, DOI 10.1002/1531-8249(200011)48:5<723::AID-ANA5>3.3.CO;2-N
  67. Swinton PA, 2018, FRONT NUTR, V5, DOI 10.3389/fnut.2018.00041
  68. Tarnopolsky MA, 2003, AM J PHYSIOL-REG I, V285, pR762, DOI 10.1152/ajpregu.00270.2003
  69. TOMPOROWSKI PD, 1986, PSYCHOL BULL, V99, P338, DOI 10.1037/0033-2909.99.3.338
  70. Turner CE, 2015, MAGN RESON IMAGING, V33, P1163, DOI 10.1016/j.mri.2015.06.018
  71. Turner CE, 2015, J NEUROSCI, V35, P1773, DOI 10.1523/JNEUROSCI.3113-14.2015
  72. Vagnozzi R, 2013, J HEAD TRAUMA REHAB, V28, P284, DOI 10.1097/HTR.0b013e3182795045
  73. Walker J B, 1979, Adv Enzymol Relat Areas Mol Biol, V50, P177
  74. Watanabe A, 2002, NEUROSCI RES, V42, P279, DOI 10.1016/S0168-0102(02)00007-X
  75. Wilkinson ID, 2006, CLIN J SPORT MED, V16, P63, DOI 10.1097/01.jsm.0000176372.67398.c8