Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
PULIT, Sara L.
WENG, Lu-Chen
MCARDLE, Patrick F.
TRINQUART, Ludovic
CHOI, Seung Hoan
MITCHELL, Braxton D.
ROSAND, Jonathan
BAKKER, Paul I. W. de
BENJAMIN, Emelia J.
ELLINOR, Patrick T.
Autor de Grupo de pesquisa
Atrial Fibrillation Genetics Conso
Int Stroke Genetics Consortium
Citação
NEUROLOGY-GENETICS, v.4, n.6, article ID UNSP e293, 8p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. Methods We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. Results We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Conclusions Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
Palavras-chave
Referências
  1. ADAMS HP, 1993, STROKE, V24, P35, DOI 10.1161/01.STR.24.1.35
  2. Alonso A, 2013, J AM HEART ASSOC, V2, DOI 10.1161/JAHA.112.000102
  3. Arsava EM, 2010, NEUROLOGY, V75, P1277, DOI 10.1212/WNL.0b013e3181f612ce
  4. Ay H, 2007, STROKE, V38, P2979, DOI 10.1161/STROKEAHA.107.490896
  5. Bevan S, 2012, STROKE, V43, P3161, DOI 10.1161/STROKEAHA.112.665760
  6. Christophersen IE, 2017, NAT GENET, V57, P289
  7. Chugh SS, 2014, CIRCULATION, V129, P837, DOI 10.1161/CIRCULATIONAHA.113.005119
  8. Connolly SJ, 2009, NEW ENGL J MED, V360, P2066, DOI 10.1056/NEJMoa0901301
  9. Diener HC, 2012, LANCET NEUROL, V11, P225, DOI 10.1016/S1474-4422(12)70017-0
  10. Feigin VL, 2009, LANCET NEUROL, V8, P355, DOI 10.1016/S1474-4422(09)70025-0
  11. Franz MR, 1997, J AM COLL CARDIOL, V30, P1785, DOI 10.1016/S0735-1097(97)00385-9
  12. Gladstone DJ, 2014, NEW ENGL J MED, V370, P2467, DOI 10.1056/NEJMoa1311376
  13. Go AS, 2001, JAMA-J AM MED ASSOC, V285, P2370, DOI 10.1001/jama.285.18.2370
  14. Gretarsdottir S, 2008, ANN NEUROL, V64, P402, DOI 10.1002/ana.21480
  15. Gudbjartsson DF, 2007, NATURE, V448, P353, DOI 10.1038/nature06007
  16. Gudbjartsson DF, 2009, NAT GENET, V41, P876, DOI 10.1038/ng.417
  17. Henninger N, 2016, STROKE, V47, P1486, DOI 10.1161/STROKEAHA.116.012865
  18. Khera AV, 2018, NAT GENET, V50, P1219, DOI 10.1038/s41588-018-0183-z
  19. Khera AV, 2016, NEW ENGL J MED, V375, P2349, DOI 10.1056/NEJMoa1605086
  20. Kolominsky-Rabas PL, 2001, STROKE, V32, P2735, DOI 10.1161/hs1201.100209
  21. Lamas GA, 2002, NEW ENGL J MED, V346, P1854, DOI 10.1056/NEJMoa013040
  22. Lewis CM, 2017, GENOME MED, V9, DOI 10.1186/s13073-017-0489-y
  23. Loh PR, 2015, NAT GENET, V47, P284, DOI 10.1038/ng.3190
  24. Lubitz SA, 2017, STROKE, V48, P1451, DOI 10.1161/STROKEAHA.116.016198
  25. Lubitz SA, 2010, CIRC-ARRHYTHMIA ELEC, V3, P291, DOI 10.1161/CIRCEP.110.942441
  26. Mavaddat N, 2015, JNCI-J NATL CANCER I, V107, DOI 10.1093/jnci/djv036
  27. Mega JL, 2015, LANCET, V385, P2264, DOI 10.1016/S0140-6736(14)61730-X
  28. NINDS Stroke Genetics Network (SiGN) International Stroke Genetics Consortium, 2015, LANCET NEUROL, V15, P4
  29. Okbay A, 2016, NATURE, V533, P539, DOI 10.1038/nature17671
  30. Petty GW, 1999, STROKE, V30, P2513, DOI 10.1161/01.STR.30.12.2513
  31. Rosand J, 2016, LANCET NEUROL, V15, P174, DOI 10.1016/S1474-4422(15)00338-5
  32. Sanna T, 2014, NEW ENGL J MED, V370, P2478, DOI 10.1056/NEJMoa1313600
  33. Seshadri S, 2006, STROKE, V37, P345, DOI 10.1161/01.STR.0000199613.38911.b2
  34. Theriault S, 2018, CIRC-GENOM PRECIS ME, V11, DOI 10.1161/CIRCGEN.117.001849
  35. Visscher PM, 2017, AM J HUM GENET, V101, P5, DOI 10.1016/j.ajhg.2017.06.005
  36. Weng LC, 2018, CIRCULATION, V137, P1027, DOI 10.1161/CIRCULATIONAHA.117.031431
  37. Weng LC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.117.001838
  38. WOLF PA, 1991, STROKE, V22, P983, DOI 10.1161/01.STR.22.8.983
  39. World Health Organization, 2014, WHO TOP 10 CAUS DEAT