Proteomic profiling of the proteolytic events in the secretome of the transformed phenotype of melanocyte-derived cells using Terminal Amine Isotopic Labeling of Substrates

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
LIBERATO, Tarcisio
FUKUSHIMA, Isabella
KITANO, Eduardo S.
SERRANO, Solange M. T.
ZELANIS, Andre
Citação
JOURNAL OF PROTEOMICS, v.192, p.291-298, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The comprehensive profiling of the repertoire of secreted proteins from cancer cells samples provides information on the signaling events in oncogenesis as well as on the cross-talk between normal and tumoral cells. Moreover, the analysis of post-translational modifications in secreted proteins may unravel biological circuits regulated by irreversible modifications such as proteolytic processing. In this context, we used Terminal Amine Isotopic Labeling of Substrates (TAILS) to perform a system-wide investigation on the N-terminome of the secretomes derived from a paired set of mouse cell lines: Melan-a (a normal melanocyte) and Tm1 (its transformed phenotype). Evaluation of the amino acid identities at the scissile bond in internal peptides revealed significant differences, suggesting distinct proteolytic processes acting in the normal and tumoral secretomes. The mapping and annotation of cleavage sites in the tumoral secretome suggested functional roles of active proteases in central biological processes related to oncogenesis, such as the processing of growth factors, cleavage of extracellular matrix proteins and the shedding of ectopic domains from the cell surface, some of which may represent novel processed forms of the corresponding proteins. In the context of the tumor microenvironment, these results suggest important biological roles of proteolytic processing in murine melanoma secreted proteins.
Palavras-chave
Secretome, TAILS, N-terminomics, Proteomics, Melanoma, Cancer
Referências
  1. Aksnes H, 2016, TRENDS BIOCHEM SCI, V41, P746, DOI 10.1016/j.tibs.2016.07.005
  2. Bateman A, 2009, BIOESSAYS, V31, P1245, DOI 10.1002/bies.200900086
  3. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  4. Colaert N, 2009, NAT METHODS, V6, P786, DOI 10.1038/nmeth1109-786
  5. de Andrade LF, 2018, SCIENCE, V359, P1537, DOI 10.1126/science.aao0505
  6. Deutsch EW, 2015, PROTEOM CLIN APPL, V9, P745, DOI 10.1002/prca.201400164
  7. Dias MH, 2016, DRUG DISCOV TODAY, V21, P264, DOI 10.1016/j.drudis.2015.10.004
  8. DUBOIS CM, 1995, J BIOL CHEM, V270, P10618, DOI 10.1074/jbc.270.18.10618
  9. Eckhard U, 2016, MATRIX BIOL, V49, P37, DOI 10.1016/j.matbio.2015.09.003
  10. Eckhard U, 2015, J PROTEOME RES, V14, P3568, DOI 10.1021/acs.jproteome.5b00579
  11. Eng JK, 2013, PROTEOMICS, V13, P22, DOI 10.1002/pmic.201200439
  12. Fortelny N, 2015, NUCLEIC ACIDS RES, V43, pD290, DOI 10.1093/nar/gku1012
  13. Fortelny N, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001869
  14. Hagikura M, 2010, PATHOL INT, V60, P735, DOI 10.1111/j.1440-1827.2010.02592.x
  15. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  16. HARPER E, 1972, BIOCHEM BIOPH RES CO, V46, P1956, DOI 10.1016/0006-291X(72)90076-9
  17. Hashimoto M, 2004, ONCOGENE, V23, P3716, DOI 10.1038/sj.onc.1207418
  18. He XX, 2016, ADV EXP MED BIOL, V936, P73, DOI 10.1007/978-3-319-42023-3_4
  19. Holmberg C, 2013, J PROTEOME RES, V12, P3413, DOI 10.1021/pr400270q
  20. Javelaud D, 2008, PIGM CELL MELANOMA R, V21, P123, DOI 10.1111/j.1755-148X.2008.00450.x
  21. Kao AW, 2017, NAT REV NEUROSCI, V18, P325, DOI 10.1038/nrn.2017.36
  22. Keller UAD, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2003512
  23. Kleifeld O, 2011, NAT PROTOC, V6, P1578, DOI 10.1038/nprot.2011.382
  24. Kleifeld O, 2010, NAT BIOTECHNOL, V28, P281, DOI 10.1038/nbt.1611
  25. Lai ZW, 2015, PROTEOMICS, V15, P2470, DOI 10.1002/pmic.201500023
  26. Lange PF, 2014, J PROTEOME RES, V13, P2028, DOI 10.1021/pr401191w
  27. Lange PF, 2013, CURR OPIN CHEM BIOL, V17, P73, DOI 10.1016/j.cbpa.2012.11.025
  28. Laurent-Matha V, 2012, FASEB J, V26, P5172, DOI 10.1096/fj.12-205229
  29. Liberato T, 2018, J PROTEOMICS, V174, P1, DOI 10.1016/j.jprot.2017.12.013
  30. Mariathasan S, 2018, NATURE, V554, P544, DOI 10.1038/nature25501
  31. Mi HY, 2013, NAT PROTOC, V8, P1551, DOI 10.1038/nprot.2013.092
  32. Na CH, 2018, GENOME RES, V28, P25, DOI 10.1101/gr.226050.117
  33. Oba-Shinjo SM, 2006, NEOPLASIA, V8, P231, DOI 10.1593/neo.05781
  34. Obenauf AC, 2015, NATURE, V520, P368, DOI 10.1038/nature14336
  35. Ohshima Y, 2010, J DERMATOL SCI, V57, P140, DOI 10.1016/j.jdermsci.2009.11.004
  36. Overall CM, 2007, NAT REV MOL CELL BIO, V8, P245, DOI 10.1038/nrm2120
  37. Paltridge JL, 2013, BBA-PROTEINS PROTEOM, V1834, P2233, DOI 10.1016/j.bbapap.2013.03.014
  38. Prudova A, 2016, CELL REP, V16, P1762, DOI 10.1016/j.celrep.2016.06.086
  39. Rappsilber J, 2007, NAT PROTOC, V2, P1896, DOI 10.1038/nprot.2007.261
  40. Sandri S, 2016, PHARMACOL RES, V111, P523, DOI 10.1016/j.phrs.2016.07.017
  41. Sanmamed MF, 2017, ANN ONCOL, V28, P1988, DOI 10.1093/annonc/mdx190
  42. Schilling O, 2011, BIOL CHEM, V392, P1031, DOI 10.1515/BC.2011.158
  43. Sendoel A, 2017, NATURE, V541, P494, DOI 10.1038/nature21036
  44. Shahinian H, 2014, MOL ONCOL, V8, P68, DOI 10.1016/j.molonc.2013.09.003
  45. Szklarczyk D, 2017, NUCLEIC ACIDS RES, V45, pD362, DOI 10.1093/nar/gkw937
  46. Tauriello DVF, 2018, NATURE, V554, P538, DOI 10.1038/nature25492
  47. Turk B, 2012, EMBO J, V31, P1630, DOI 10.1038/emboj.2012.42
  48. Vizcaino JA, 2014, NAT BIOTECHNOL, V32, P223, DOI 10.1038/nbt.2839
  49. Yu Q, 2000, GENE DEV, V14, P163