Accuracy of Ultrasonography in the Evaluation of Tubal Sterilization Microinsert Positioning: Systematic Review and Meta-analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
JOURNAL OF ULTRASOUND IN MEDICINE, v.38, n.2, p.289-297, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The current reference standard to check the position of a tubal sterilization microinsert device after its insertion is hysterosalpingography. The objective of this study was to evaluate the accuracy of 2-dimensional (2D) and 3-dimensional (3D) ultrasonography (US) in the positioning of the tubal sterilization microinsert for definitive contraception. We searched MEDLINE, Embase, Cochrane, and Scopus databases through October 2017. Selection criteria included studies that analyzed the accuracy of 2D or 3D US, or both, with respect to the positioning of the microinsert. Data were displayed as forest plots and a summary receiver operating characteristic curves. Values for sensitivity, specificity, and positive and negative likelihood ratios (LRs) were calculated. The pooled analysis produced sensitivity and specificity values for 2D US in the positioning of the microinsert of 0.88 (95% confidence interval [CI], 0.47-1.0) and 0.92 (95% CI, 0.88-0.95), respectively, with positive and negative LRs of 8.68 (95% CI, 1.63-46.1) and 0.35 (95% CI, 0.11-1.11), respectively. Three studies analyzed the performance of 3D US, showing sensitivity, specificity, and positive and negative LRs of 0.75 (95% CI, 0.35-0.97), 0.82 (95% CI, 0.77-0.87), 3.65 (95% CI, 2.31-5.75), and 0.46 (95% CI, 0.2-1.09). In conclusion, 2D and 3D US are methods that show good accuracy in tubal sterilization microinsert positioning.
Palavras-chave
gynecology, nonchemical, tubal occlusions, tubal sterilization, ultrasonography
Referências
  1. Alvarez-Lopez C, 2017, GYNECOL OBSTET INVES, V82, P170, DOI 10.1159/000446950
  2. Garcia-Lavandeira Sandra, 2014, Ginecol Obstet Mex, V82, P523
  3. Guelfguat M, 2012, RADIOGRAPHICS, V32, P1659, DOI 10.1148/rg.326125501
  4. Kerin JF, 2005, J MINIM INVAS GYN L, V12, P50, DOI 10.1016/j.jmig.2004.12.009
  5. Kerin JF, 2003, HUM REPROD, V18, P1223, DOI 10.1093/humrep/deg256
  6. Legendre G, 2011, HUM REPROD, V26, P2683, DOI 10.1093/humrep/der242
  7. Legendre G, 2010, FERTIL STERIL, V94, P2732, DOI 10.1016/j.fertnstert.2010.03.056
  8. Moher D, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.jclinepi.2010.03.004, 10.1136/bmj.b2535, 10.1002/14651858.CD008242.pub3, 10.1002/14651858.CD008216.pub4, 10.1371/journal.pmed.1000097, 10.1016/j.jclinepi.2010.02.006, 10.1136/bmj.c869]
  9. Paladini D, 2015, J MINIM INVAS GYN, V22, P115, DOI 10.1016/j.jmig.2014.08.010
  10. Sotiriadis A, 2016, ULTRASOUND OBST GYN, V47, P386, DOI 10.1002/uog.15762
  11. Teoh M, 2003, AUST NZ J OBSTET GYN, V43, P378, DOI 10.1046/j.0004-8666.2003.00102.x
  12. Thiel J, 2011, J OBSTET GYNAECOL CA, V33, P134, DOI 10.1016/S1701-2163(16)34798-3
  13. Thiel JA, 2008, J OBSTET GYNAECOL CA, V30, P581, DOI 10.1016/S1701-2163(16)32891-2
  14. Valle RF, 2001, FERTIL STERIL, V76, P974, DOI 10.1016/S0015-0282(01)02858-8
  15. Veersema S, 2005, FERTIL STERIL, V84, P1733, DOI 10.1016/j.fertnstert.2005.05.047
  16. Veersema S, 2011, J MINIM INVAS GYN, V18, P164, DOI 10.1016/j.jmig.2010.10.010
  17. Zamora Javier, 2006, BMC Med Res Methodol, V6, P31, DOI 10.1186/1471-2288-6-31