Prolonged Periods of Social Isolation From Weaning Reduce the Anti-inflammatory Cytokine IL-10 in Blood and Brain

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2019
Editora
FRONTIERS MEDIA SA
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
CORSI-ZUELLI, Fabiana
FACHIM, Helene Aparecida
LOUREIRO, Camila Marcelino
SHUHAMA, Rosana
BERTOZI, Giuliano
JOCA, Samia Regiane Lourengo
LOUZADA-JUNIOR, Paulo
DEL-BEN, Cristina Marta
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
FRONTIERS IN NEUROSCIENCE, v.12, article ID 1011, 12p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Life stressors during critical periods are reported to trigger an immune dysfunction characterised by abnormal production of inflammatory cytokines. Despite the relationship between early stressors and schizophrenia is described, the evidence on inflammatory biomarkers remains limited. We aimed to investigate whether an imbalance between pro-and anti-inflammatory cytokines in the brain is reflected in the peripheral blood of rats submitted to post-weaning social isolation (pwSI), a model with validity to study schizophrenia. We evaluated pro-and anti-inflammatory cytokines (IL-6, TNF-alpha, and IL-10) simultaneously at blood, prefrontal cortex and hippocampal tissues (Milliplex MAP), including the respective cytokines gene expression (mRNA) (qRT-PCR TaqMan mastermix). We also performed a correlation matrix to explore significant correlations among cytokines (protein and mRNA) in blood and brain, as well as cytokines and total number of square crossings in the open field for isolated-reared animals. Male Wistar rats (n = 10/group) were kept isolated (n = 1/cage) or grouped (n = 3-4/cage) since weaning for 10 weeks. After this period, rats were assessed for locomotion and sacrificed for blood and brain cytokines measurements. Prolonged pwSI decreased IL-10 protein and mRNA in the blood, and IL-10 protein in the hippocampus, along with decreased IL-6 and its mRNA expression in the prefrontal cortex. Our results also showed that cytokines tend to correlate to one-another among the compartments investigated, although blood and brain correlations are far from perfect. IL-10 hippocampal levels were negatively correlated with hyperlocomotion in the open field. Despite the unexpected decrease in IL-6 and unchanged TNF-alpha levels contrast to the expected pro-inflammatory phenotype, this may suggest that reduced anti-inflammatory signalling may be critical for eliciting abnormal behaviour in adulthood. Altogether, these results suggest that prolonged early-life adverse events reduce the ability to build proper anti-inflammatory cytokine that is translated from blood-to-brain.
Palavras-chave
anti-inflammatory cytokines, early stress, cytokines, inflammation, interleukin-10, post-weaning social isolation, schizophrenia, social isolation rearing
Referências
  1. Bachis A, 2001, J NEUROSCI, V21, P3104, DOI 10.1523/JNEUROSCI.21-09-03104.2001
  2. Baumeister D, 2016, MOL PSYCHIATR, V21, P642, DOI 10.1038/mp.2015.67
  3. Belzeaux R, 2017, PSYCHONEUROENDOCRINO, V75, P72, DOI 10.1016/j.psyneuen.2016.10.010
  4. Biro L, 2017, BRAIN STRUCT FUNCT, V222, P1861, DOI 10.1007/s00429-016-1312-z
  5. Borsini A, 2015, TRENDS NEUROSCI, V38, P145, DOI 10.1016/j.tins.2014.12.006
  6. Coelho R, 2014, ACTA PSYCHIAT SCAND, V129, P180, DOI 10.1111/acps.12217
  7. Couper KN, 2008, J IMMUNOL, V180, P5771, DOI 10.4049/jimmunol.180.9.5771
  8. Cruces J, 2014, J NEUROIMMUNOL, V277, P18, DOI 10.1016/j.jneuroim.2014.09.011
  9. Corsi-Zuelli FMD, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00618
  10. Day-Wilson KM, 2006, NEUROSCIENCE, V141, P1113, DOI 10.1016/j.neuroscience.2006.04.048
  11. do Prado CH, 2017, NEUROPSYCHOPHARMACOL, V42, P2272, DOI 10.1038/npp.2017.137
  12. Doherty FD, 2018, BRAIN BEHAV IMMUN, V68, P261, DOI 10.1016/j.bbi.2017.10.024
  13. Domeney A, 1998, PHARMACOL BIOCHEM BE, V59, P883, DOI 10.1016/S0091-3057(97)00534-0
  14. Fone KCF, 2008, NEUROSCI BIOBEHAV R, V32, P1087, DOI 10.1016/j.neubiorev.2008.03.003
  15. Garay PA, 2013, BRAIN BEHAV IMMUN, V31, P54, DOI 10.1016/j.bbi.2012.07.008
  16. Glantz LA, 2000, ARCH GEN PSYCHIAT, V57, P65, DOI 10.1001/archpsyc.57.1.65
  17. Goldsmith DR, 2016, MOL PSYCHIATR, V21, P1696, DOI 10.1038/mp.2016.3
  18. Harte MK, 2004, BIOL PSYCHIAT, V56, P296, DOI 10.1016/j.biopsych.2004.06.009
  19. Heidbreder CA, 2000, NEUROSCIENCE, V100, P749, DOI 10.1016/S0306-4522(00)00336-5
  20. Howes O, 2015, J PSYCHOPHARMACOL, V29, P97, DOI 10.1177/0269881114563634
  21. Ibi D, 2008, J NEUROCHEM, V105, P921, DOI 10.1111/j.1471-4159.2007.05207.x
  22. Jones CA, 2011, BRIT J PHARMACOL, V164, P1162, DOI 10.1111/j.1476-5381.2011.01386.x
  23. Julian GS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109902
  24. Kenk M, 2015, SCHIZOPHRENIA BULL, V41, P85, DOI 10.1093/schbul/sbu157
  25. Khandaker GM, 2016, PSYCHOPHARMACOLOGY, V233, P1559, DOI 10.1007/s00213-015-3975-1
  26. Knuesel I, 2014, NAT REV NEUROL, V10, P643, DOI 10.1038/nrneurol.2014.187
  27. Ko CY, 2016, BRAIN BEHAV IMMUN, V51, P119, DOI 10.1016/j.bbi.2015.08.003
  28. Ko CY, 2015, PSYCHONEUROENDOCRINO, V55, P173, DOI 10.1016/j.psyneuen.2015.02.007
  29. Krugel U, 2014, ARCH TOXICOL, V88, P853, DOI 10.1007/s00204-014-1203-0
  30. Kwilasz AJ, 2015, NEUROPHARMACOLOGY, V96, P55, DOI 10.1016/j.neuropharm.2014.10.020
  31. Ledeboer A, 2002, EUR J NEUROSCI, V16, P1175, DOI 10.1046/j.1460-9568.2002.02200.x
  32. Lewis DA, 2003, ANN NY ACAD SCI, V1003, P102, DOI 10.1196/annals.1300.007
  33. Life Technologies Corporation, 2011, APPL BIOS VIIA 7 REA
  34. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  35. Lobo-Silva D, 2016, J NEUROINFLAMM, V13, DOI 10.1186/s12974-016-0763-8
  36. Lovelock DF, 2017, J NEUROENDOCRINOL, V29, DOI 10.1111/jne.12514
  37. Lu L, 2003, EXP NEUROL, V183, P600, DOI 10.1016/S0014-4886(03)00248-6
  38. Lu YX, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186700
  39. Maier T, 2009, FEBS LETT, V583, P3966, DOI 10.1016/j.febslet.2009.10.036
  40. Meyer U, 2014, BIOL PSYCHIAT, V75, P307, DOI 10.1016/j.biopsych.2013.07.011
  41. Meyer U, 2011, BRAIN BEHAV IMMUN, V25, P1507, DOI 10.1016/j.bbi.2011.05.014
  42. Meyer U, 2011, PHARMACOL THERAPEUT, V132, P96, DOI 10.1016/j.pharmthera.2011.06.003
  43. Miller BJ, 2011, BIOL PSYCHIAT, V70, P663, DOI 10.1016/j.biopsych.2011.04.013
  44. Moller M, 2013, BRAIN BEHAV IMMUN, V30, P156, DOI 10.1016/j.bbi.2012.12.011
  45. Molina-Holgado E, 2001, EUR J NEUROSCI, V13, P493, DOI 10.1046/j.0953-816x.2000.01412.x
  46. Monji A, 2013, PROG NEURO-PSYCHOPH, V42, P115, DOI 10.1016/j.pnpbp.2011.12.002
  47. Oskvig DB, 2012, BRAIN BEHAV IMMUN, V26, P623, DOI 10.1016/j.bbi.2012.01.015
  48. Ottoni EB, 2000, BEHAV RES METH INS C, V32, P446, DOI 10.3758/BF03200814
  49. Pandey GN, 2018, SCHIZOPHR RES, V192, P247, DOI 10.1016/j.schres.2017.04.043
  50. Pantelis C, 2005, SCHIZOPHRENIA BULL, V31, P672, DOI 10.1093/schbul/sbi034
  51. Pascual R, 2007, INT J NEUROSCI, V117, P465, DOI 10.1080/00207450600773459
  52. Pereda-Perez I, 2013, NEUROBIOL LEARN MEM, V106, P31, DOI 10.1016/j.nlm.2013.07.004
  53. Perez-de Puig I, 2013, J CEREBR BLOOD F MET, V33, P1955, DOI 10.1038/jcbfm.2013.155
  54. Potvin S, 2008, BIOL PSYCHIAT, V63, P801, DOI 10.1016/j.[)iopsych.2007-09.024
  55. Quan MN, 2010, NEUROSCIENCE, V169, P214, DOI 10.1016/j.neuroscience.2010.04.048
  56. R Core Team, 2018, R LANG ENV STAT COMP
  57. Roque Susana, 2009, Cardiovasc Psychiatry Neurol, V2009, P187894, DOI 10.1155/2009/187894
  58. Schafer Ingo, 2011, Dialogues Clin Neurosci, V13, P360
  59. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  60. Schubert MI, 2009, NEUROSCIENCE, V159, P21, DOI 10.1016/j.neuroscience.2008.12.019
  61. Silva-Gomez AB, 2003, BRAIN RES, V983, P128, DOI 10.1016/S0006-8993(03)03042-7
  62. Smith SEP, 2007, J NEUROSCI, V27, P10695, DOI 10.1523/JNEUROSCI.2178-07.2007
  63. Strle K, 2001, CRIT REV IMMUNOL, V21, P427
  64. Takano A, 2010, INT J NEUROPSYCHOPH, V13, P943, DOI 10.1017/S1461145710000313
  65. Trepanier MO, 2016, MOL PSYCHIATR, V21, P1009, DOI 10.1038/mp.2016.90
  66. Upthegrove R, 2014, SCHIZOPHR RES, V155, P101, DOI 10.1016/j.schres.2014.03.005
  67. van Berckel BN, 2008, BIOL PSYCHIAT, V64, P820, DOI 10.1016/j.biopsych.2008.04.025
  68. van Kesteren CFMG, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/tp.2017.4
  69. Varese F, 2012, SCHIZOPHRENIA BULL, V38, P661, DOI 10.1093/schbul/sbs050
  70. Vita A, 2007, BRIT J PSYCHIAT, V190, P271, DOI 10.1192/bjp.190.3.271
  71. Walder RY, 2014, MOL PAIN, V10, DOI 10.1186/1744-8069-10-55
  72. Wang AK, 2017, SCHIZOPHR B, V44, P75, DOI 10.1093/SCHBUL/SBX035
  73. Wang HT, 2017, NEUROTOX RES, V31, P505, DOI 10.1007/s12640-016-9696-3
  74. Xiu MH, 2014, SCHIZOPHR RES, V156, P9, DOI 10.1016/j.schres.2014.03.024
  75. Yin JL, 2001, IMMUNOL CELL BIOL, V79, P213, DOI 10.1046/j.1440-1711.2001.01002.x