A Guinea Pig Model of Airway Smooth Muscle Hyperreactivity Induced by Chronic Allergic Lung Inflammation: Contribution of Epithelium and Oxidative Stress

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
VASCONCELOS, Luiz Henrique Cesar
SILVA, Maria da Conceicao Correia
COSTA, Alana Cristina
OLIVEIRA, Giuliana Amanda de
SOUZA, Iara Leao Luna de
QUEIROGA, Fernando Ramos
ARAUJO, Layanne da Cunha
CARDOSO, Glebia Alexa
SILVA, Alexandre Sergio
Citação
FRONTIERS IN PHARMACOLOGY, v.9, article ID 1547, 15p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Asthma is a heterogeneous disease of the airways characterized by chronic inflammation associated with bronchial and smooth muscle hyperresponsiveness. Currently, different murine models for the study of asthma show poor bronchial hyperresponsiveness due to a scarcity of smooth muscle and large airways, resulting in a failure to reproduce smooth muscle hyperreactivity. Thus, we aimed to standardize a guinea pig model of chronic allergic lung inflammation mimicking airway smooth muscle hyperreactivity observed in asthmatics (Asth). Animals were randomly divided into a control group (Ctrl), which received saline (0.9% NaCl), and the Asth group, subjected to in vivo sensitization with ovalbumin (OVA) nebulization. Morphological analysis was performed by hematoxylin-eosin staining. Bronchial hyperresponsiveness was evaluated by nebulization time in the fifth, sixth, and seventh inhalations (NT5-7) and tracheal isometric contractions were assessed by force transducer. Total antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and protein expression by Western blot. Histologically, the Asth group developed peribronchial cellular infiltrate, epithelial hyperplasia and smooth muscle thickening. After the fourth nebulization, the Asth group developed bronchial hyperreactivity. The trachea from the Asth group contracted after in vitro stimulation with OVA, differing from the Ctrl group, which showed no response. Additionally, airway smooth muscle hyperreactivity to carbachol and histamine was observed in the Asth group only in intact epithelium preparations, but not to KCl, and this effect was associated with an augmented production of reactive oxygen species. Moreover, lung inflammation impaired the relaxant potency of isoproterenol only in intact epithelium preparations, without interfering with nifedipine, and it was found to be produced by transforming growth factor-beta negative modulation of beta adrenergic receptors and, furthermore, big-conductance Ca2+-sensitive K+ channels. These effects were also associated with increased levels of phosphatidylinositol 3-kinases but not extracellular signal-regulated kinases 1/2 or phosphorylation, and augmented alpha-actin content as well, explaining the increased smooth muscle mass. Furthermore, pulmonary antioxidant capacity was impaired in the Asth group. Therefore, we developed a standardized and easy-touse, reproducible guinea pig model of lung inflammation that mimics airway smooth muscle hypercontractility, facilitating the investigation of the mechanisms of bronchial hyperresponsiveness in asthma and new therapeutic alternatives.
Palavras-chave
airways, asthma, contractile reactivity, relaxation, oxidative stress
Referências
  1. AHMED F, 1985, BRIT J PHARMACOL, V84, P861, DOI 10.1111/j.1476-5381.1985.tb17380.x
  2. Alexander SPH, 2013, BRIT J PHARMACOL, V170, P1459, DOI 10.1111/bph.12445
  3. Amin KAM, 2015, TURK THORAC J, V16, P133, DOI 10.5152/ttd.2015.4942
  4. Angeli P, 2008, AM J PHYSIOL-LUNG C, V294, pL1197, DOI 10.1152/ajplung.00199.2007
  5. BAI TR, 1991, AM REV RESPIR DIS, V143, P441, DOI 10.1164/ajrccm/143.2.441
  6. Baraldo S., 2014, MECH BREATHING NEW I, P25, DOI 10.1007/978-88-470-5647-3-3
  7. BARNES PJ, 1995, AM J RESP CRIT CARE, V152, P838, DOI 10.1164/ajrccm.152.3.7663795
  8. BARNES PJ, 1986, RESPIRATION, V50, P9
  9. BENJEBRIA A, 1993, BRIT J PHARMACOL, V109, P131, DOI 10.1111/j.1476-5381.1993.tb13542.x
  10. Bergeron Celine, 2009, Proc Am Thorac Soc, V6, P301, DOI 10.1513/pats.200808-089RM
  11. Bishopp A, 2017, ANN ALLERG ASTHMA IM, V118, P445, DOI 10.1016/j.anai.2017.02.004
  12. BOLTON TB, 1979, PHYSIOL REV, V59, P606
  13. Boterman M, 2006, EUR J PHARMACOL, V529, P151, DOI 10.1016/j.ejphar.2005.10.064
  14. Bousquet J, 2004, CHEST, V125, P1378, DOI 10.1378/chest.125.4.1378
  15. Boxall C, 2006, EUR RESPIR J, V27, P208, DOI 10.1183/09031936.06.00130004
  16. BRAND-WILLIAMS W, 1995, FOOD SCI TECHNOL-LEB, V28, P25
  17. Brehm JM, 2015, AM J RESP CRIT CARE, V192, P47, DOI 10.1164/rccm.201501-0037OC
  18. Camargo LD, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01835
  19. Canning BJ, 2003, CURR OPIN PHARMACOL, V3, P244, DOI 10.1016/S1471-4892(03)00045-6
  20. CARROLL N, 1993, AM REV RESPIR DIS, V147, P405, DOI 10.1164/ajrccm/147.2.405
  21. CHAND N, 1978, AGENTS ACTIONS, V8, P171, DOI 10.1007/BF01966600
  22. Chesne J, 2015, J ALLERGY CLIN IMMUN, V135, P1643, DOI 10.1016/j.jaci.2014.12.1872
  23. Cohen L, 2007, AM J RESP CRIT CARE, V176, P138, DOI 10.1164/rccm.200607-1062OC
  24. Dale HH, 1913, J PHARMACOL EXP THER, V4, P167
  25. Danek CJ, 2004, J APPL PHYSIOL, V97, P1946, DOI 10.1152/japplphysiol.01282.2003
  26. DANIEL EE, 1986, RESP PHYSIOL, V63, P109, DOI 10.1016/0034-5687(86)90034-4
  27. Davies Donna E, 2009, Proc Am Thorac Soc, V6, P678, DOI 10.1513/pats.200907-067DP
  28. de Boer J, 2001, BRIT J PHARMACOL, V133, P1235, DOI 10.1038/sj.bjp.0704191
  29. Du WL, 2006, J BIOL CHEM, V281, P30143, DOI 10.1074/jbc.M606541200
  30. Fairbank NJ, 2008, AM J PHYSIOL-LUNG C, V295, pL479, DOI 10.1152/ajplung.00421.2007
  31. Fireman P, 2003, ALLERGY ASTHMA PROC, V24, P79
  32. GOLDIE RG, 1986, BRIT J CLIN PHARMACO, V22, P669, DOI 10.1111/j.1365-2125.1986.tb02956.x
  33. Gosens R, 2008, EUR J PHARMACOL, V585, P385, DOI 10.1016/j.ejphar.2008.01.055
  34. Henricks PAJ, 2001, PULM PHARMACOL THER, V14, P409, DOI 10.1006/pupt.2001.0319
  35. Hirst Stuart J, 2004, J Allergy Clin Immunol, V114, pS2, DOI 10.1016/j.jaci.2004.04.039
  36. Hoshino M, 2001, J ALLERGY CLIN IMMUN, V107, P295, DOI 10.1067/mai.2001.111928
  37. Howard D. W., 2004, 5 NOAA NOS NCCOS
  38. Inman GJ, 2002, MOL PHARMACOL, V62, P65, DOI 10.1124/mol.62.1.65
  39. JONES TR, 1988, BRIT J PHARMACOL, V95, P309, DOI 10.1111/j.1476-5381.1988.tb16578.x
  40. Kume H, 2013, CALCIUM SIGNALING AI, P49
  41. Kume H, 2015, MUSCLE CELL AND TISSUE, P289, DOI 10.5772/59347
  42. Lambrecht BN, 2015, NAT IMMUNOL, V16, P45, DOI 10.1038/ni.3049
  43. Lauzon Anne-Marie, 2016, F1000Res, V5, DOI 10.12688/f1000research.7422.1
  44. LEFF AR, 1988, AM REV RESPIR DIS, V137, P1198
  45. Loxham M, 2014, CLIN EXP ALLERGY, V44, P1299, DOI 10.1111/cea.12309
  46. Matusovsky OS, 2016, AM J RESP CELL MOL, V54, P718, DOI 10.1165/rcmb.2015-0180OC
  47. Matyas S, 2002, JPN J PHARMACOL, V88, P270, DOI 10.1254/jjp.88.270
  48. Mcmillan SJ, 2004, CLIN EXP ALLERGY, V34, P497, DOI 10.1111/j.1365-2222.2004.01895.x
  49. Meurs H, 2008, EUR RESPIR J, V32, P487, DOI 10.1183/09031936.00023608
  50. Meurs H, 2001, PROG INFLAM RES, P121
  51. Mitchell HW, 2009, PULM PHARMACOL THER, V22, P363, DOI 10.1016/j.pupt.2008.12.011
  52. Montuschi P, 2008, MINI-REV MED CHEM, V8, P647, DOI 10.2174/138955708784567395
  53. Montuschi P, 2015, J MED CHEM, V58, P4131, DOI 10.1021/jm5013227
  54. Montuschi P, 2011, DRUG DISCOV TODAY, V16, P1084, DOI 10.1016/j.drudis.2011.09.005
  55. Montuschi P, 2010, METHODS MOL BIOL, V594, P73, DOI 10.1007/978-1-60761-411-1_5
  56. Morwood K, 2005, INTERN MED J, V35, P240, DOI 10.1111/j.1445-5994.2004.00801.x
  57. Nakashima AS, 2008, J APPL PHYSIOL, V104, P1778, DOI 10.1152/japplphysiol.00830.2007
  58. NALINE E, 1994, EUR RESPIR J, V7, P914
  59. Nesmith AP, 2014, LAB CHIP, V14, P3925, DOI 10.1039/c4lc00688g
  60. NOGAMI M, 1994, AM J PHYSIOL, V266, pL187
  61. Oenema TA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065580
  62. Okafor O. Y., 2011, Asian Pacific Journal of Tropical Biomedicine, V1, P12, DOI 10.1016/S2221-1691(11)60060-9
  63. Pelaia G, 2008, RESP MED, V102, P1173, DOI 10.1016/j.rmed.2008.02.020
  64. Pigati PA, 2015, BMC PULM MED, V15, DOI 10.1186/s12890-015-0073-4
  65. Possa SS, 2012, AM J PHYSIOL-LUNG C, V303, pL939, DOI 10.1152/ajplung.00034.2012
  66. Ressmeyer AR, 2006, EUR RESPIR J, V28, P603, DOI 10.1183/09031936.06.00004206
  67. RHODEN KJ, 1989, BRIT J PHARMACOL, V98, P325, DOI 10.1111/j.1476-5381.1989.tb16898.x
  68. Roux E, 2014, J PULM RESP MED, V4, P2, DOI [10.4172/2161-105X, DOI 10.4172/2161-105X]
  69. Santini G, 2016, EXPERT OPIN INV DRUG, V25, P639, DOI 10.1080/13543784.2016.1175434
  70. Schmidt M, 2003, J IMMUNOL, V171, P380, DOI 10.4049/jimmunol.171.1.380
  71. Schultz WH, 1910, J PHARMACOL EXP THER, V1, P551
  72. Shaukat Asma, 2015, J Ayub Med Coll Abbottabad, V27, P527
  73. Sherwin CM, 2003, APPL ANIM BEHAV SCI, V81, P291, DOI 10.1016/S0168-1591(02)00288-5
  74. Silva A. S., 2012, EXP PARASOTOL, V132, P166, DOI [10.1016/j.exppara.2012.06.010, DOI 10.1016/J.EXPPARA.2012.06.010]
  75. Silva ANS, 2018, ANN SURG, V267, P114, DOI 10.1097/SLA.0000000000002042
  76. Sutcliffe A, 2012, AM J RESP CRIT CARE, V185, P267, DOI 10.1164/rccm.201107-1281OC
  77. Tiberio IFLC, 1997, AM J RESP CRIT CARE, V155, P1739, DOI 10.1164/ajrccm.155.5.9154886
  78. Towbin H, 1992, Biotechnology, V24, P145
  79. TSCHIRHART E, 1987, J PHARMACOL EXP THER, V243, P310
  80. Van Schoor J, 2000, EUR RESPIR J, V16, P514, DOI 10.1034/j.1399-3003.2000.016003514.x
  81. Westerhof F, 2001, MEDIAT INFLAMM, V10, P143, DOI 10.1080/09629350124877
  82. Whicker S D, 1988, Pulm Pharmacol, V1, P25, DOI 10.1016/0952-0600(88)90007-5
  83. Wright D, 2013, PULM PHARMACOL THER, V26, P24, DOI 10.1016/j.pupt.2012.08.006
  84. Yagi Y, 2002, COMP BIOCHEM PHYS C, V131, P511, DOI 10.1016/S1532-0456(02)00040-6
  85. Zosky GR, 2007, CLIN EXP ALLERGY, V37, P973, DOI 10.1111/j.1365-2222.2007.02740.x