A mathematical model relates intracellular TLR4 oscillations to sepsis progression

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD.
Autores
STAN, R. C.
CAMARGO, M. M. De
Citação
BMC RESEARCH NOTES, v.11, n.1, article ID 462, p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Oscillations of physiological parameters describe many biological processes and their modulation is determinant for various pathologies. In sepsis, toll-like receptor 4 (TLR4) is a key sensor for signaling the presence of Gram-negative bacteria. Its intracellular trafficking rates shift the equilibrium between the pro- and anti-inflammatory downstream signaling cascades, leading to either the physiological resolution of the bacterial stimulation or to sepsis. This study aimed to evaluate the effects of TLR4 increased expression and intracellular trafficking on the course and outcome of sepsis. Results: Using a set of three differential equations, we defined the TLR4 fluxes between relevant cell organelles. We obtained three different regions in the phase space: (1) a limit-cycle describing unstimulated physiological oscillations, (2) a fixed-point attractor resulting from moderate LPS stimulation that is resolved and (3) a double-attractor resulting from sustained LPS stimulation that leads to sepsis. We used this model to describe available hospital data of sepsis patients and we correctly characterize the clinical outcome of these patients. © 2018 The Author(s).
Palavras-chave
Inflammation, Intracellular trafficking, Ordinary differential equations, Oscillations, Sepsis
Referências
  1. Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity (1997) Nature, 388, pp. 394-397
  2. Williams, D.L., Ha, T., Li, C., Kalbfleisch, J.H., Schweitzer, J., Vogt, W., Browder, I.W., Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality (2003) Crit Care Med, 31, pp. 1808-1818
  3. Chaturvedi, A., Pierce, S.K., How location governs toll-like receptor signaling (2009) Traffic, 10, pp. 621-628
  4. Tsujimoto, H., Ono, S., Efron, P.A., Scumpia, P.O., Moldawer, L.L., Mochizuki, H., Role of Toll-like receptors in the development of sepsis (2008) Shock, 29, pp. 315-321
  5. Klein, D.C., Skjesol, A., Kers-Rebel, E.D., Sherstova, T., Sporsheim, B., Egeberg, K.W., Stokke, B.T., Husebye, H., CD14, TLR4 and TRAM show different trafficking dynamics during LPS stimulation (2015) Traffic, 16, pp. 677-690
  6. Husebye, H., Halaas, Ø., Stenmark, H., Tunheim, G., Sandanger, Ø., Bogen, B., Brech, A., Espevik, T., Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity (2006) EMBO J, 25, pp. 683-692
  7. Kagan, J.C., Su, T., Horng, T., Chow, A., Akira, S., Medzhitov, R., TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta (2009) Nat Immunol, 9, pp. 361-368
  8. Uronen-Hansson, H., Allen, J., Osman, M., Squires, G., Klein, N., Callard, R.E., Toll-like receptor 2 (TLR2) and TLR4 are present inside human dendritic cells, associated with microtubules and the Golgi apparatus but are not detectable on the cell surface: Integrity of microtubules is required for interleukin-12 production in response to internalized bacteria (2004) Immunology, 111, pp. 173-178
  9. Rocuts, F., Ma, Y., Zhang, X., Gao, W., Yue, Y., Vartanian, T., Wang, H., Carbon monoxide suppresses membrane expression of TLR4 via myeloid differentiation factor-2 in betaTC3 cells (2010) J Immunol, 185, pp. 2134-2139
  10. Brubaker, S.W., Bonham, K.S., Zanoni, I., Kagan, J.C., Innate immune pattern recognition: A cell biological perspective (2015) Annu Rev Immunol, 33, pp. 257-290
  11. Verstak, B., Stack, J., Ve, T., Mangan, M., Hjerrild, K., Jeon, J., Stahl, R., Mansell, A., The TLR signaling adaptor TRAM interacts with TRAF6 to mediate activation of the inflammatory response by TLR4 (2014) J Leukoc Biol, 96, pp. 427-436
  12. Gangloff, M., Different dimerisation mode for TLR4 upon endosomal acidification? (2012) Trends Biochem Sci, 37, pp. 92-98
  13. Distefano, M.B., Kjos, I., Bakke, O., Progida, C., Rab7b at the intersection of intracellular trafficking and cell migration (2015) Commun Integr Biol, 8 (6), p. e1023492
  14. Wang, Y., Chen, T., Han, C., He, D., Liu, H., An, H., Cai, Z., Cao, X., Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4 (2007) Blood, 110, pp. 962-971
  15. Swain, P.S., Elowitz, M.B., Siggia, E.D., Intrinsic and extrinsic contributions to stochasticity in gene expression (2002) Proc Natl Acad Sci, 99, pp. 12795-12800
  16. Stan, R.S., Bonin, C., Porto, R., Soriano, F., Camargo, M.M., Negative correlation between tlr4 and grp78 expression is characteristic of sepsis onset and progression (2006) BioRxiv
  17. Togbe, D., Schnyder-Candrian, S., Schnyder, B., Couillin, I., Maillet, I., Bihl, F., Malo, D., Quesniaux, V.F., TLR4 gene dosage contributes to endotoxin-induced acute respiratory inflammation (2006) J Leukoc Biol, 80, pp. 451-457
  18. Kollef, M., Micek, S., Hampton, N., Doherty, J.A., Kumar, A., Septic shock attributed to Candida infection: Importance of empiric therapy and source control (2012) Clin Infect Dis, 54, pp. 739-1746