Galectin-3 sensitized melanoma cell lines to vemurafenib (PLX4032) induced cell death through prevention of autophagy

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
IMPACT JOURNALS LLC
Autores
PEREIRA, G. J. S.
GIL, C. D.
SMAILI, S. S.
Citação
ONCOTARGET, v.9, n.18, p.14567-14579, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Melanoma is a current worldwide problem, as its incidence is increasing. In the last years, several studies have shown that melanoma cells display high levels of autophagy, a self-degradative process that can promote survival leading to drug resistance. Consequently, autophagy regulation represents a challenge for cancer therapy. Herein, we showed that galectin-3 (Gal-3), a β-galactoside binding lectin which is often lost along melanoma progression, is a negative regulator of autophagy in melanoma cells. Our data demonstrated that Gal-3low/negative cells were more resistant to the inhibition of the activity of the cancer driver gene BRAFV600E by vemurafenib (PLX4032). Interestingly, in these cells, starvation caused further LC3-II accumulation in cells exposed to chloroquine, which inhibits the degradative step in autophagy. In addition, Gal-3 low/negative tumor cells accumulated more LC3-II than Gal-3 high tumor cells in vivo. Resistance of Gal-3low/negative cells was associated with increased production of superoxide and activation of the Endoplasmic Reticulum (ER) stress response, as evaluated by accumulation of GRP78. Pharmacological inhibition of autophagy with bafilomycin A reversed the relative resistance of Gal-3low/negative cells to vemurafenib treatment. Taken together, these results show that the autophagic flux is dependent on Gal-3 levels, which attenuate the prosurvival role of autophagy. © Bustos et al.
Palavras-chave
Autophagy, Galectin-3, Melanoma, Starvation, Vemurafenib
Referências
  1. Cardoso, A.C., Andrade, L.N., Bustos, S.O., Chammas, R., Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments (2016) Front Oncol, 6, p. 127
  2. Thijssen, V.L., Heusschen, R., Caers, J., Griffioen, A.W., Galectin expression in cancer diagnosis and prognosis: A systematic review (2015) Biochim Biophys Acta, 1855, pp. 235-247
  3. Ruvolo, P.P., Galectin 3 as a guardian of the tumor microenvironment (2016) Biochim Biophys Acta, 1863, pp. 427-437
  4. Lepur, A., Carlsson, M.C., Novak, R., Dumic, J., Nilsson, U.J., Leffler, H., Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types (2012) Biochim Biophys Acta, 1820, pp. 804-818
  5. Wang, L., Guo, X.L., Molecular regulation of galectin-3 expression and therapeutic implication in cancer progression (2016) Biomed Pharmacother, 78, pp. 165-171
  6. Anaka, M., Hudson, C., Lo, P.H., Do, H., Caballero, O.L., Davis, I.D., Dobrovic, A., Behren, A., Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors (2013) BMC Med Genomics, 6, p. 40
  7. Elder, D.E., Melanoma progression (2016) Pathology, 48, pp. 147-154
  8. Winder, M., Virós, A., Mechanisms of Drug Resistance in Melanoma (2017) Handb Exp Pharmacol, , Mar 9. [Epub ahead of print]
  9. Brown, E.R., Doig, T., Anderson, N., Brenn, T., Doherty, V., Xu, Y., Bartlett, J.M., Melton, D.W., Association of galectin-3 expression with melanoma progression and prognosis (2012) Eur J Cancer, 48, pp. 865-874
  10. Li, Z.W., Wang, Y., Xue, W.C., Si, L., Cui, C.L., Cao, D.F., Zhou, L.X., Lu, A.P., [Expression and prognostic significance of galectin-1 and galectin-3 in benign nevi and melanomas]. [Article in Chinese] (2013) Zhonghua Bing Li Xue Za Zhi, 42, pp. 801-805
  11. Demirsoy, S., Martin, S., Maes, H., Agostinis, P., Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma (2016) Front Oncol, 6, p. 240
  12. Amaral, T., Sinnberg, T., Meier, F., Krepler, C., Levesque, M., Niessner, H., Garbe, C., MAPK pathway in melanoma part II-secondary and adaptive resistance mechanisms to BRAF inhibition (2017) Eur J Cancer, 73, pp. 93-101
  13. Kon, M., Kiffin, R., Koga, H., Chapochnick, J., Macian, F., Varticovski, L., Cuervo, A.M., Chaperone-mediated autophagy is required for tumor growth (2011) Sci Transl Med, 3
  14. Thorburn, A., Thamm, D.H., Gustafson, D.L., Autophagy and cancer therapy (2014) Mol Pharmacol, 85, pp. 830-838
  15. White, E., The role for autophagy in cancer (2015) J Clin Invest, 125, pp. 42-46
  16. Parzych, K.R., Klionsky, D.J., An overview of autophagy: morphology, mechanism, and regulation (2014) Antioxid Redox Signal, 20, pp. 460-473
  17. Abada, A., Elazar, Z., Getting ready for building: signaling and autophagosome biogenesis (2014) EMBO Rep, 15, pp. 839-852
  18. Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., Levine, B., Induction of autophagy and inhibition of tumorigenesis by beclin 1 (1999) Nature, 402, pp. 672-676
  19. Towers, C.G., Thorburn, A., Therapeutic Targeting of Autophagy (2016) EBioMedicine, 14, pp. 15-23
  20. Lippai, M., Szatmári, Z., Autophagy-from molecular mechanisms to clinical relevance (2017) Cell Biol Toxicol, 33, pp. 145-168
  21. Mowers, E.E., Sharifi, M.N., Macleod, K.F., Autophagy in cancer metastasis (2017) Oncogene, 36, pp. 1619-1630
  22. Hara, Y., Nakamura, M., Overexpression of autophagyrelated beclin-1 in advanced malignant melanoma and its low expression in melanoma-in-situ (2012) Eur J Dermatol, 22, pp. 128-129
  23. Maes, H., Martin, S., Verfaillie, T., Agostinis, P., Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro (2014) Exp Dermatol, 23, pp. 101-106
  24. Lazova, R., Klump, V., Pawelek, J., Autophagy in cutaneous malignant melanoma (2010) J Cutan Pathol, 37, pp. 256-268
  25. Corazzari, M., Fimia, G.M., Lovat, P., Piacentini, M., Why is autophagy important for melanoma?. Molecular mechanisms and therapeutic implications (2013) Semin Cancer Biol, 23, pp. 337-343
  26. Ndoye, A., Weeraratna, A.T., Autophagy-An emerging target for melanoma therapy (2016) F1000Res, 5
  27. Mourad-Zeidan, A.A., Melnikova, V.O., Wang, H., Raz, A., Bar-Eli, M., Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry (2008) Am J Pathol, 173, pp. 1839-1852
  28. Wang, Y.G., Kim, S.J., Baek, J.H., Lee, H.W., Jeong, S.Y., Chun, K.H., Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression (2012) Exp Mol Med, 44, pp. 387-393
  29. Bollag, G., Tsai, J., Zhang, J., Zhang, C., Ibrahim, P., Nolop, K., Hirth, P., Vemurafenib: the first drug approved for BRAFmutant cancer (2012) Nat Rev Drug Discov, 11, pp. 873-886
  30. Shelledy, L., Roman, D., Vemurafenib: First-in-Class BRAFMutated Inhibitor for the Treatment of Unresectable or Metastatic Melanoma (2015) J Adv Pract Oncol, 6, pp. 361-365
  31. Paz, I., Sachse, M., Dupont, N., Mounier, J., Cederfur, C., Enninga, J., Leffler, H., Sansonetti, P., Galectin-3, a marker for vacuole lysis by invasive pathogens (2010) Cell Microbiol, 12, pp. 530-544
  32. Lakshminarayan, R., Wunder, C., Becken, U., Howes, M.T., Benzing, C., Arumugam, S., Sales, S., Gaus, K., Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrinindependent carriers (2014) Nat Cell Biol, 16, pp. 595-606
  33. Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., Randow, F., Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion (2012) Nature, 482, pp. 414-418
  34. Ma, X.H., Piao, S.F., Dey, S., McAfee, Q., Karakousis, G., Villanueva, J., Hart, L.S., Pawelek, J.M., Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma (2014) J Clin Invest, 124, pp. 1406-1417
  35. Brauer, M., Amann, M., Burnett, R.T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S.B., Thurston, G.D., Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution (2012) Environ Sci Technol, 46, pp. 652-660
  36. Villanueva, J., Vultur, A., Lee, J.T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A.K., Wubbenhorst, B., D'Andrea, K., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK, IGF-1R/PI3K (2010) Cancer Cell, 18, pp. 683-695
  37. Tang, D.Y., Ellis, R.A., Lovat, P.E., Prognostic Impact of Autophagy Biomarkers for Cutaneous Melanoma (2016) Front Oncol, 6, p. 236
  38. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Øvervatn, A., Johansen, T., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy (2007) J Biol Chem, 282, pp. 24131-24145
  39. Rusten, T.E., Stenmark, H., p62, an autophagy hero or culprit? (2010) Nat Cell Biol, 12, pp. 207-209
  40. Moscat, J., Diaz-Meco, M.T., p62 at the crossroads of autophagy, apoptosis, and cancer (2009) Cell, 137, pp. 1001-1004
  41. Sahani, M.H., Itakura, E., Mizushima, N., Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids (2014) Autophagy, 10, pp. 431-441
  42. Chen, X., Khambu, B., Zhang, H., Gao, W., Li, M., Yoshimori, T., Yin, X.M., Autophagy induced by calcium phosphate precipitates targets damaged endosomes (2014) J Biol Chem, 289, pp. 11162-11174
  43. Fujita, N., Morita, E., Itoh, T., Tanaka, A., Nakaoka, M., Osada, Y., Umemoto, T., Iwai, K., Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin (2013) J Cell Biol, 203, pp. 115-128
  44. Maejima, I., Takahashi, A., Omori, H., Kimura, T., Takabatake, Y., Saitoh, T., Yamamoto, A., Yoshimori, T., Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury (2013) EMBO J, 32, pp. 2336-2347
  45. Chauhan, S., Kumar, S., Jain, A., Ponpuak, M., Mudd, M.H., Kimura, T., Choi, S.W., Deretic, V., TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis (2016) Dev Cell, 39, pp. 13-27
  46. Song, L., Tang, J.W., Owusu, L., Sun, M.Z., Wu, J., Zhang, J., Galectin-3 in cancer (2014) Clin Chim Acta, 431, pp. 185-191
  47. Nabi, I.R., Shankar, J., Dennis, J.W., The galectin lattice at a glance (2015) J Cell Sci, 128, pp. 2213-2219
  48. Mizushima, N., Autophagy: process and function (2007) Genes Dev, 21, pp. 2861-2873
  49. Wojtkowiak, J.W., Rothberg, J.M., Kumar, V., Schramm, K.J., Haller, E., Proemsey, J.B., Lloyd, M.C., Gillies, R.J., Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments (2012) Cancer Res, 72, pp. 3938-3947
  50. Filippi-Chiela, E.C., Bueno e Silva, M.M., Thomé, M.P., Lenz, G., Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage (2015) Autophagy, 11, pp. 1099-1113
  51. Wu, S.Y., Lan, S.H., Cheng, D.E., Chen, W.K., Shen, C.H., Lee, Y.R., Zuchini, R., Liu, H.S., Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation (2011) Neoplasia, 13, pp. 1171-1182
  52. Ito, H., Aoki, H., Kühnel, F., Kondo, Y., Kubicka, S., Wirth, T., Iwado, E., Kondo, S., Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus (2006) J Natl Cancer Inst, 98, pp. 625-636
  53. Li, L., Tan, J., Miao, Y., Lei, P., Zhang, Q., ROS, Autophagy: Interactions and Molecular Regulatory Mechanisms (2015) Cell Mol Neurobiol, 35, pp. 615-621
  54. Scherz-Shouval, R., Shvets, E., Elazar, Z., Oxidation as a post-translational modification that regulates autophagy (2007) Autophagy, 3, pp. 371-373
  55. Chen, Y., Azad, M.B., Gibson, S.B., Superoxide is the major reactive oxygen species regulating autophagy (2009) Cell Death Differ, 16, pp. 1040-1052
  56. Filomeni, G., De Zio, D., Cecconi, F., Oxidative stress and autophagy: the clash between damage and metabolic needs (2015) Cell Death Differ, 22, pp. 377-388
  57. Kongara, S., Karantza, V., The interplay between autophagy and ROS in tumorigenesis (2012) Front Oncol, 2, p. 171
  58. Poillet-Perez, L., Despouy, G., Delage-Mourroux, R., Boyer-Guittaut, M., Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy (2015) Redox Biol, 4, pp. 184-192
  59. Zhou, W., Xu, G., Wang, Y., Xu, Z., Liu, X., Xu, X., Ren, G., Tian, K., Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells (2017) Cell Cycle, 16, pp. 73-81
  60. Zeeshan, H.M., Lee, G.H., Kim, H.R., Chae, H.J., Endoplasmic Reticulum Stress and Associated ROS (2016) Int J Mol Sci, 17, p. 327
  61. Li, J., Ni, M., Lee, B., Barron, E., Hinton, D.R., Lee, A.S., The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells (2008) Cell Death Differ, 15, pp. 1460-1471
  62. Bhandary, B., Marahatta, A., Kim, H.R., Chae, H.J., An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases (2012) Int J Mol Sci, 14, pp. 434-456
  63. Senft, D., Ronai, Z.A., UPR, autophagy, and mitochondria crosstalk underlies the ER stress response (2015) Trends Biochem Sci, 40, pp. 141-148
  64. Matarrese, P., Tinari, N., Semeraro, M.L., Natoli, C., Iacobelli, S., Malorni, W., Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis (2000) FEBS Lett, 473, pp. 311-315
  65. Yang, Z.J., Chee, C.E., Huang, S., Sinicrope, F.A., The role of autophagy in cancer: therapeutic implications (2011) Mol Cancer Ther, 10, pp. 1533-1541
  66. Das, G., Shravage, B.V., Baehrecke, E.H., Regulation and function of autophagy during cell survival and cell death (2012) Cold Spring Harb Perspect Biol, 4
  67. Elad-Sfadia, G., Haklai, R., Balan, E., Kloog, Y., Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity (2004) J Biol Chem, 279, pp. 34922-34930
  68. Saegusa, J., Hsu, D.K., Liu, W., Kuwabara, I., Kuwabara, Y., Yu, L., Liu, F.T., Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation (2008) J Invest Dermatol, 128, pp. 2403-2411
  69. Gao, X., Balan, V., Tai, G., Raz, A., Galectin-3 induces cell migration via a calcium-sensitive MAPK/ERK1/2 pathway (2014) Oncotarget, 5, pp. 2077-2084. , https://doi.org/10.18632/oncotarget.1786
  70. Seguin, L., Camargo, M.F., Wettersten, H.I., Kato, S., Desgrosellier, J.S., von Schalscha, T., Elliott, K.C., Cheresh, D.A., Galectin-3, a druggable vulnerability for KRAS-addicted cancers (2017) Cancer Discov, 7, pp. 1464-1479
  71. Martinez-Lopez, N., Athonvarangkul, D., Mishall, P., Sahu, S., Singh, R., Autophagy proteins regulate ERK phosphorylation (2013) Nat Commun, 4, p. 2799
  72. Grasso, S., Pereira, G.J., Palmeira-Dos-Santos, C., Calgarotto, A.K., Martínez-Lacaci, I., Ferragut, J.A., Smaili, S.S., Bincoletto, C., Autophagy regulates Selumetinib (AZD6244) inducedapoptosis in colorectal cancer cells (2016) Eur J Med Chem, 122, pp. 611-618