Effects of -alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER WIEN
Autores
OLIVEIRA, Luana Farias de
PAINELLI, Vitor de Salles
MARINS, Joao Carlos Bouzas
FRANCHINI, Emerson
ARTIOLI, Guilherme Giannini
Citação
AMINO ACIDS, v.51, n.1, p.83-96, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The effects of -alanine (BA) and sodium bicarbonate (SB) on energy metabolism during work-matched high-intensity exercise and cycling time-trial performance were examined in 71 male cyclists. They were randomised to receive BA+placebo (BA, n=18), placebo+SB (SB, n=17), BA+SB (BASB, n=19), or placebo+placebo (PLA, n=18). BA was supplemented for 28days (6.4gday(-1)) and SB (0.3gkg(-1)) ingested 60min before exercise on the post-supplementation trial. Dextrose and calcium carbonate were placebos for BA and SB, respectively. Before (PRE) and after (POST) supplementation, participants performed a high-intensity intermittent cycling test (HICT-110%) consisting of four 60-s bouts at 110% of their maximal power output (60-s rest between bouts). The estimated contribution of the energy systems was calculated for each bout in 39 of the participants (BA: n=9; SB: n=10; BASB: n=10, PLA: n=10). Ten minutes after HICT-110%, cycling performance was determined in a 30-kJ time-trial test in all participants. Both groups receiving SB increased estimated glycolytic contribution in the overall HICT-110%, which approached significance (SB: +23%, p=0.068 vs. PRE; BASB: +18%, p=0.059 vs. PRE). No effects of supplementation were observed for the estimated oxidative and ATP-PCr systems. Time to complete 30 kJ was not significantly changed by any of the treatments, although a trend toward significance was shown in the BASB group (p=0.06). We conclude that SB, but not BA, increases the estimated glycolytic contribution to high-intensity intermittent exercise when total work done is controlled and that BA and SB, either alone or in combination, do not improve short-duration cycling time-trial performance.
Palavras-chave
Metabolism, Buffering, Performance, Acidosis, Cycling
Referências
  1. Abe H, 2000, BIOCHEMISTRY-MOSCOW+, V65, P757
  2. Artioli GG, 2007, INT J SPORT NUTR EXE, V17, P206, DOI 10.1123/ijsnem.17.2.206
  3. Bellinger PM, 2016, EUR J SPORT SCI, V16, P829, DOI 10.1080/17461391.2015.1120782
  4. Bellinger PM, 2016, APPL PHYSIOL NUTR ME, V41, P864, DOI 10.1139/apnm-2016-0095
  5. Bellinger PM, 2012, MED SCI SPORT EXER, V44, P1545, DOI 10.1249/MSS.0b013e31824cc08d
  6. Bishop D, 2005, MED SCI SPORT EXER, V37, P759, DOI 10.1249/01.MSS.0000161803.44656.3C
  7. Bishop D, 2004, MED SCI SPORT EXER, V36, P807, DOI 10.1249/01.MSS.0000126392.20025.17
  8. CADY EB, 1989, J PHYSIOL-LONDON, V418, P311, DOI 10.1113/jphysiol.1989.sp017842
  9. Carr AJ, 2011, SPORTS MED, V41, P801, DOI 10.2165/11591440-000000000-00000
  10. COSTILL DL, 1984, INT J SPORTS MED, V5, P228, DOI 10.1055/s-2008-1025910
  11. Currell K, 2008, SPORTS MED, V38, P297, DOI 10.2165/00007256-200838040-00003
  12. Danaher J, 2014, EUR J APPL PHYSIOL, V114, P1715, DOI 10.1007/s00421-014-2895-9
  13. Dias GFD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143086
  14. Debold EP, 2016, MED SCI SPORT EXER, V48, P2270, DOI 10.1249/MSS.0000000000001047
  15. di Prampero PE, 1999, RESP PHYSIOL, V118, P103, DOI 10.1016/S0034-5687(99)00083-3
  16. Duffield R, 2004, J SCI MED SPORT, V7, P11, DOI 10.1016/S1440-2440(04)80039-2
  17. Fitts RH, 2016, MED SCI SPORT EXER, V48, P2335, DOI 10.1249/MSS.0000000000001043
  18. Gladden LB, 2004, J PHYSIOL-LONDON, V558, P5, DOI 10.1113/jphysiol.2003.058701
  19. Harris RC, 2006, AMINO ACIDS, V30, P279, DOI 10.1007/s00726-006-0299-9
  20. Heibel AB, 2018, FRONT NUTR, V5, DOI 10.3389/fnut.2018.00035
  21. HERMANSEN L, 1972, J APPL PHYSIOL, V32, P304
  22. Hill CA, 2007, AMINO ACIDS, V32, P225, DOI 10.1007/s00726-006-0364-4
  23. Hobson RM, 2013, INT J SPORT NUTR EXE, V23, P480, DOI 10.1123/ijsnem.23.5.480
  24. Hollidge-Horvat MG, 2000, AM J PHYSIOL-ENDOC M, V278, pE316
  25. Jones G, 2011, P NUTR SOC, V70, pE363, DOI 10.1017/S0029665111004484
  26. Jones RL, 2016, INT J SPORT NUTR EXE, V26, P445, DOI 10.1123/ijsnem.2015-0286
  27. Lopes-Silva JP, 2018, EUR J SPORT SCI, V18, P431, DOI 10.1080/17461391.2018.1424942
  28. Macfarlane DJ, 2017, EUR J APPL PHYSIOL, V117, P2369, DOI 10.1007/s00421-017-3716-8
  29. Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x
  30. Oliveira LF, 2017, SCAND J MED SCI SPOR, V27, P1231, DOI 10.1111/sms.12792
  31. Painelli VD, 2013, APPL PHYSIOL NUTR ME, V38, P525, DOI 10.1139/apnm-2012-0286
  32. Lopes-Silva JP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142078
  33. Brisola GMP, 2015, APPL PHYSIOL NUTR ME, V40, P931, DOI 10.1139/apnm-2015-0036
  34. Price M, 2003, MED SCI SPORT EXER, V35, P1303, DOI 10.1249/01.MSS.0000079067.46555.3C
  35. SAHLIN K, 1975, BIOCHEM J, V152, P173, DOI 10.1042/bj1520173
  36. Sakamoto A, 2018, J STRENGTH COND RES, V32, P170, DOI 10.1519/JSC.0000000000001789
  37. Sale C, 2011, MED SCI SPORT EXER, V43, P1972, DOI 10.1249/MSS.0b013e3182188501
  38. Saunders B, 2017, MED SCI SPORT EXER, V49, P896, DOI 10.1249/MSS.0000000000001173
  39. Saunders B, 2017, BRIT J SPORT MED, V51, P658, DOI 10.1136/bjsports-2016-096396
  40. Saunders B, 2014, INT J SPORT PHYSIOL, V9, P627, DOI [10.1123/ijspp.2013-0295, 10.1123/IJSPP.2013-0295]
  41. Saunders B, 2014, INT J SPORT NUTR EXE, V24, P196, DOI 10.1123/ijsnem.2013-0102
  42. Siegler Jason C, 2016, Sports Med Open, V2, P41
  43. SPRIET LL, 1986, AM J PHYSIOL, V251, pR833
  44. SUTTON JR, 1981, CLIN SCI, V61, P331, DOI 10.1042/cs0610331
  45. Tobias G, 2013, AMINO ACIDS, V45, P309, DOI 10.1007/s00726-013-1495-z