Distortion Correction Protocol for 3T Stereotactic Magnetic Resonance Imaging: A Clinical Study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
WORLD NEUROSURGERY, v.122, p.E690-E699, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND: With application of 3T magnetic resonance imaging (MRI) to functional neurosurgery procedures and given the inherent requirement of millimetric precision, the need to develop a method for correction of geometric image distortion emerged. The aim of this study was to demonstrate clinical safety and practical viability of a correction protocol in patients scheduled to undergo stereotactic procedures using 3T MRI. METHODS: This prospective study comprised 20 patients scheduled to undergo computed tomography (CT) stereotactic functional procedures or encephalic brain lesion biopsies. The CT images were references for MRI geometric accuracy calculations. For each scan, 2 images were obtained: normal and reversed images. Eight distinct points on CT and MRI were selected summing 152 points that were based on a power analysis calculation value >0.999. One patient was excluded because of the inability to find reliable common landmark points on CT and MRI. RESULTS: The distortion range was 0-5.6 mm and increased proportionally with stereotactic isocenter distance, meaning the distortion was greater in the periphery. After correction, the minimum and maximum distortion found was 0 mm and 3.5 mm, respectively. There was no significant difference between CT and MRI corrected x-coordinates (P > 0.05). CONCLUSIONS: The proposed method can satisfactorily correct geometric distortions in clinical 3T MRI studies. Clinical use of the technique can be practical and efficient after software automation of the process. The method can be applied to all spin-echo MRI sequences.
Palavras-chave
Clinical protocol, Distortion, Inverted sequence, Magnetic resonance, Stereotactic technique
Referências
  1. Alvarez-Linera J, 2008, EUR J RADIOL, V67, P415, DOI 10.1016/j.ejrad.2008.02.045
  2. BAKKER CJG, 1992, MAGN RESON IMAGING, V10, P597, DOI 10.1016/0730-725X(92)90011-N
  3. Baldwin LN, 2007, MED PHYS, V34, P388, DOI 10.1118/1.2402331
  4. CHANG H, 1992, IEEE T MED IMAGING, V11, P319, DOI 10.1109/42.158935
  5. Chen LL, 2004, INT J RADIAT ONCOL, V60, P636, DOI 10.1016/j.ijrobp.2004.05.068
  6. Clare SJ, 1997, THESIS
  7. Dong S., 1992, Proceedings. Fifth Annual IEEE Symposium on Computer-Based Medical Systems (Cat. No.92CH3117-9), P181, DOI 10.1109/CBMS.1992.244949
  8. Doran SJ, 2005, PHYS MED BIOL, V50, P1343, DOI 10.1088/0031-9155/50/7/001
  9. FEIG E, 1986, PHYS MED BIOL, V31, P1091, DOI 10.1088/0031-9155/31/10/002
  10. Fransson A, 2001, STRAHLENTHER ONKOL, V177, P59, DOI 10.1007/PL00002385
  11. HUTCHISON JMS, 1978, J PHYS E SCI INSTRUM, V11, P217, DOI 10.1088/0022-3735/11/3/012
  12. LAI CM, 1983, PHYS MED BIOL, V28, P925, DOI 10.1088/0031-9155/28/8/005
  13. Lee YK, 2003, RADIOTHER ONCOL, V66, P203, DOI 10.1016/S0167-8140(02)00440-1
  14. Maciunas RJ, 1996, STEREOT FUNCT NEUROS, V66, P137, DOI 10.1159/000099680
  15. ODONNELL M, 1985, MED PHYS, V12, P20, DOI 10.1118/1.595732
  16. Schmitz BL, 2005, AM J NEURORADIOL, V26, P2229
  17. SEKIHARA K, 1987, MED PHYS, V14, P1087, DOI 10.1118/1.595989
  18. SUMANAWEERA T, 1994, MAGNET RESON MED, V31, P40, DOI 10.1002/mrm.1910310106
  19. SUMANAWEERA TS, 1994, NEUROSURGERY, V35, P696, DOI 10.1227/00006123-199410000-00016
  20. Tavares WM, 2014, NEUROSURGERY, V74, P121, DOI 10.1227/NEU.0000000000000178
  21. Vaughan JT, 2001, MAGNET RESON MED, V46, P24, DOI 10.1002/mrm.1156
  22. von Elm E, 2007, BMJ-BRIT MED J, V335, P806
  23. Wang D, 2004, MAGN RESON IMAGING, V22, P1211, DOI 10.1016/j.mri.2004.08.012
  24. Wang D, 2004, MAGN RESON IMAGING, V22, P1223, DOI 10.1016/j.mri.2004.08.014
  25. Wang DM, 2004, MAGN RESON IMAGING, V22, P529, DOI 10.1016/j.mri.2004.01.008