Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae)

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Autores
CALDAS, Lhais Araujo
YOSHINAGA, Meire L.
FERREIRA, Marcelo J. P.
LAGO, Joao H. G.
PASSERO, Luiz Felipe D.
SARTORELLI, Patricia
Citação
BIOORGANIC CHEMISTRY, v.83, p.348-353, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Bioactivity-guided fractionation of antileishmanial active CH2Cl2 phase of MeOH extract from leaves of Calea pinnatifida led to isolation of two sesquiterpene lactones calein C (1) and calealactone C (2), which structures were stablished on the basis of spectroscopic analysis. Compounds 1 and 2 displayed potent activity against Leishmania amazonensis promastigotes with EC50 of 1.7 and 4.6 mu g mL(-1), respectively. Compound 2 presented low cytotoxicity for J774 macrophages and displayed activity against amastigote forms of L. amazonensis similar to miltefosine with CC50 values of 31.73 and 27.18 mu g mL(-1), respectively. Additionally, compounds 1 and 2 caused ultrastructural changes in promastigotes leading to a loss of their classical structural morphology, as evidenced by electron microscopy. Also compound 2 decreased the mitochondria membrane potential. To the best of our knowledge, this is the first occurrence of 1 and 2 in C. pinnatifida. The results obtained highlighted the importance of studying sesquiterpene lactones isolated from Calea pinnatifida in terms of antileishmanial activity, in order to understand the mechanism of action of the isolated compounds in promastigotes forms of L. amazonensis.
Palavras-chave
Calea pinnatifida, Sesquiterpene lactones, Antileishmanial activity, Ultrastructural changes, Mitochondrial membrane potential
Referências
  1. Abreu-Silva A. L., 2004, VET PARASITOL, V423, P87
  2. Almeida R. P., 1996, AM J TROP MED HYG, V178, P84
  3. Barrera PA, 2008, J PARASITOL, V94, P1143, DOI 10.1645/GE-1501.1
  4. Basano S. A., 2004, REV BRAS EPIDEMIOL, V7, P3
  5. Berger I., 2001, PHYTOTHER RES, P15
  6. BOHLMANN F, 1979, PHYTOCHEMISTRY, V18, P119, DOI 10.1016/S0031-9422(00)90927-0
  7. Bou DD, 2014, PHYTOMEDICINE, V21, P676, DOI 10.1016/j.phymed.2014.01.004
  8. Caldas LA, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01191
  9. de Toledo JS, 2014, MOLECULES, V19, P6070, DOI 10.3390/molecules19056070
  10. FERREIRA ZS, 1980, PHYTOCHEMISTRY, V19, P1481, DOI 10.1016/0031-9422(80)80200-7
  11. Lima TC, 2015, REV BRAS FARMACOGN, V25, P7, DOI 10.1016/j.bjp.2015.01.004
  12. Lorenzi H, 2002, PLANTAS MED BRASIL N
  13. Marchetti Gabriela M, 2012, J Exp Pharmacol, V4, P157, DOI 10.2147/JEP.S37135
  14. Nakagawa Y, 2005, J PHARMACOL SCI, V97, P242, DOI 10.1254/jphs.FP0040456
  15. NASCIMENTO AM, 2004, J PHARM PHARMACOL, V56, P663
  16. Odonne G, 2011, J ETHNOPHARMACOL, V137, P875, DOI 10.1016/j.jep.2011.07.008
  17. Rasul A, 2013, MOLECULES, V18, P1418, DOI 10.3390/molecules18021418
  18. Rea A, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002556
  19. Rivero A, 2003, EUR J PHARMACOL, V482, P77, DOI 10.1016/j.ejphar.2003.09.058
  20. Roque Nádia, 2011, Rodriguésia, V62, P547, DOI 10.1590/2175-7860201162308
  21. SEAMAN FC, 1982, BOT REV, V48, P121, DOI 10.1007/BF02919190
  22. Silveira F. T., 2009, PARAS IMMUNOL, V423, P31
  23. Tempone AG, 2017, EUR J MED CHEM, V139, P947, DOI 10.1016/j.ejmech.2017.08.055
  24. Tiuman TS, 2005, ANTIMICROB AGENTS CH, V49, P176, DOI 10.1128/ACC.49.11.176-182.2005
  25. Torres-Guerrero Edoardo, 2017, F1000Res, V6, P750, DOI 10.12688/f1000research.11120.1
  26. WHO, 2010, WHO TECH REP SER, V949, P1
  27. Wu HK, 2011, PLANTA MED, V77, P749, DOI 10.1055/s-0030-1250584
  28. Yamada M, 2004, PHYTOCHEMISTRY, V65, P3107, DOI 10.1016/j.phytochem.2004.08.040
  29. Yamamoto ES, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144946