Gene expression in chronic granulomatous disease and interferon-gamma receptor-deficient cells treated in vitro with interferon-gamma

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
FRAZAO, Josias B.
COLOMBO, Martino
SIMILLION, Cedric
BILICAN, Adem
KELLER, Irene
WUETHRICH, Daniel
ZHU, Zhiqing
OKONIEWSKI, Michal J.
BRUGGMANN, Remy
Citação
JOURNAL OF CELLULAR BIOCHEMISTRY, v.120, n.3, p.4321-4332, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Interferon-gamma (IFN-gamma) plays an important role in innate and adaptive immunity against intracellular infections and is used clinically for the prevention and control of infections in chronic granulomatous disease (CGD) and inborn defects in the IFN-gamma/interleukin (IL)-12 axis. Using transcriptome profiling (RNA-seq), we sought to identify differentially expressed genes, transcripts and exons in Epstein-Barr virus-transformed B lymphocytes (B-EBV) cells from CGD patients, IFN-gamma receptor deficiency patients, and normal controls, treated in vitro with IFN-gamma for 48 hours. Our results show that IFN-gamma increased the expression of a diverse array of genes related to different cellular programs. In cells from normal controls and CGD patients, IFN-gamma-induced expression of genes relevant to oxidative killing, nitric oxide synthase pathway, proteasome-mediated degradation, antigen presentation, chemoattraction, and cell adhesion. IFN-gamma also upregulated genes involved in diverse stages of messenger RNA (mRNA) processing including pre-mRNA splicing, as well as others implicated in the folding, transport, and assembly of proteins. In particular, differential exon expression of WARS (encoding tryptophanyl-transfer RNA synthetase, which has an essential function in protein synthesis) induced by IFN-gamma in normal and CGD cells suggests that this gene may have an important contribution to the benefits of IFN-gamma treatment for CGD. Upregulation of mRNA and protein processing related genes in CGD and IFNRD cells could mediate some of the effects of IFN-gamma treatment. These data support the concept that IFN-gamma treatment may contribute to increased immune responses against pathogens through regulation of genes important for mRNA and protein processing.
Palavras-chave
chronic granulomatous disease, interferon-gamma, interferon-gamma receptor deficiency, phagocyte, transcriptome
Referências
  1. Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638
  2. Anders S, 2012, GENOME RES, V22, P2008, DOI 10.1101/gr.133744.111
  3. Bemiller LS, 1995, BLOOD CELL MOL DIS, V21, P239, DOI 10.1006/bcmd.1995.0028
  4. Bodzioch M, 2009, GENOMICS, V94, P247, DOI 10.1016/j.ygeno.2009.05.006
  5. BUWITT U, 1992, EMBO J, V11, P489, DOI 10.1002/j.1460-2075.1992.tb05079.x
  6. Condino-Neto A, 1998, ARCH BIOCHEM BIOPHYS, V360, P158, DOI 10.1006/abbi.1998.0958
  7. Condino-Neto A, 2000, BLOOD, V95, P3548
  8. Delneste Y, 2003, BLOOD, V101, P143, DOI 10.1182/blood-2002-04-1164
  9. Dobin Alexander, 2015, Curr Protoc Bioinformatics, V51, DOI 10.1002/0471250953.bi1114s51
  10. Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635
  11. Dorman SE, 2004, LANCET, V364, P2113, DOI 10.1016/S0140-6736(04)17552-1
  12. Dusi S, 1998, J IMMUNOL, V161, P4968
  13. Ellis TN, 2004, IMMUNOLOGY, V112, P2, DOI 10.1111/j.1365-2567.2004.01849.x
  14. EZEKOWITZ RAB, 1988, NEW ENGL J MED, V319, P146, DOI 10.1056/NEJM198807213190305
  15. Filiz S, 2015, CENT EUR J IMMUNOL, V40, P54, DOI 10.5114/ceji.2015.50833
  16. FLECKNER J, 1991, P NATL ACAD SCI USA, V88, P11520, DOI 10.1073/pnas.88.24.11520
  17. Holland SM, 2010, CLIN REV ALLERG IMMU, V38, P3, DOI 10.1007/s12016-009-8136-z
  18. Ishibashi F, 2001, BLOOD, V98, P436, DOI 10.1182/blood.V98.2.436
  19. Ito T, 2001, J IMMUNOL, V166, P2961, DOI 10.4049/jimmunol.166.5.2961
  20. Johnston RB, 2001, CURR OPIN HEMATOL, V8, P17, DOI 10.1097/00062752-200101000-00004
  21. Jouanguy E, 2000, J CLIN INVEST, V105, P1429, DOI 10.1172/JCI9166
  22. KELLER R, 1988, SCAND J IMMUNOL, V28, P113, DOI 10.1111/j.1365-3083.1988.tb02422.x
  23. Khsheibun R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102331
  24. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  25. Lian Z, 2002, BLOOD, V100, P3209, DOI 10.1182/blood-2002-03-0850
  26. Lian Z, 2001, BLOOD, V98, P513, DOI 10.1182/blood.V98.3.513
  27. Liu J, 2016, CELL MOL IMMUNOL, V13, P711, DOI 10.1038/cmi.2016.58
  28. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  29. Marszalek JR, 1999, J CELL BIOL, V145, P469, DOI 10.1083/jcb.145.3.469
  30. NATHAN CF, 1983, J EXP MED, V158, P670, DOI 10.1084/jem.158.3.670
  31. Newhurger PE, 1988, HEMATOL ONCOL CLIN N, V2, P267
  32. Nunoi H, 2004, JPN J INFECT DIS, V57, pS25
  33. Otani A, 2002, P NATL ACAD SCI USA, V99, P178, DOI 10.1073/pnas.012601899
  34. Pan JP, 2004, IMMUNOL LETT, V94, P141, DOI 10.1016/j.imlet.2004.05.003
  35. PERUSSIA B, 1987, J IMMUNOL, V138, P765
  36. PETRONI KC, 1988, J IMMUNOL, V140, P3467
  37. Ramirez-Alejo N, 2013, J INTERFERON CYTOKIN, V34, P307
  38. Routes J, 2014, J CLIN IMMUNOL, V34, P398, DOI 10.1007/s10875-014-0003-x
  39. Schroder K, 2004, J LEUKOCYTE BIOL, V75, P163, DOI 10.1189/jlb.0603252
  40. Seyer L, 2015, ACTA NEUROL SCAND, V132, P7, DOI 10.1111/ane.12337
  41. Simillion C, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1571-6
  42. TOLSTRUP AB, 1995, J BIOL CHEM, V270, P397, DOI 10.1074/jbc.270.1.397
  43. Tomassini B, 2012, HUM MOL GENET, V21, P2855, DOI 10.1093/hmg/dds110
  44. TORRICO F, 1991, J IMMUNOL, V146, P3626
  45. Tzima E, 2003, P NATL ACAD SCI USA, V100, P14903, DOI 10.1073/pnas.2436330100
  46. Vogt G, 2005, NAT GENET, V37, P692, DOI 10.1038/ng1581
  47. VOLKMAN DJ, 1984, J IMMUNOL, V133, P3006
  48. Wakasugi K, 2002, P NATL ACAD SCI USA, V99, P173, DOI 10.1073/pnas.012602099
  49. Winkelstein JA, 2000, MEDICINE, V79, P155, DOI 10.1097/00005792-200005000-00003