3D medical objects retrieval approach using SPHARMs descriptor and network flow as similarity measure

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
conferenceObject
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
IEEE
Autores
BERGAMASCO, Leila C. C.
LIMA, Karla R. P. S.
NUNES, Fatima L. S.
Citação
PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), p.329-336, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The data processing to obtain useful information is a trending topic in the computing knowledge domain since we have observed a high demand arising from society for efficient techniques to perform this activity. Spherical Harmonics (SPHARMs) have been widely used in the three-dimensional (3D) object processing domain. Harmonic coefficients generated by this mathematical theory are considered a robust source of information about 3D objects. In parallel, Ford-Fulkerson is a classical method in graph theory that solves network flows problems. In this work we demonstrate the potential of using SPHARMs along with the Ford-Fulkerson method, respectively as descriptor and similarity measure. This article also shows how we adapted the later to transform it into a similarity measure. Our approach has been validated by a 3D medical dataset composed by 3D left ventricle surfaces, some of them presenting Congestive Heart Failure (CHF). The results indicated an average precision of 90%. In addition, the execution time was 65% lower than a descriptor previously tested. With the results obtained we can conclude that our approach, mainly the Ford-Fulkerson adaptation proposed, has a great potential to retrieve 3D medical objects.
Palavras-chave
Referências
  1. [Anonymous], 2017, R PROGRAMMING
  2. Arfken G. B., 1992, MATH METHODS PHYS
  3. Ayari R, 2014, IRBM, V35, P226, DOI 10.1016/j.irbm.2014.05.002
  4. Bergamasco L. C. C., 2014, SAC 14, P902, DOI [10.1145/2554850.2554873, DOI 10.1145/2554850.2554873]
  5. Bergamasco Leila C C, 2015, AMIA Annu Symp Proc, V2015, P1811
  6. CBIC, 2012, IMAGEVIS3D REAL TIM
  7. CBIC, 2012, SEG3D VOL IM SEGM VI
  8. Chen X., 2013, SPIE MED IMAGING, V8669
  9. Coppini G, 1995, COMPUT CARDIOL, P71, DOI 10.1109/CIC.1995.482574
  10. Cormen T. H., 2001, INTRO ALGORITHMS
  11. Datta R, 2008, ACM COMPUT SURV, V40, DOI 10.1145/1348246.1348248
  12. DIESTEL R., 2017, GRAPH THEORY
  13. Eck S, 2014, PROC SPIE, V9034, DOI 10.1117/12.2043482
  14. Eclipse, 2017, ECL IDE
  15. Edvardson H, 2003, COMPUT METH PROG BIO, V72, P89, DOI 10.1016/S0169-2607(02)00126-8
  16. Groemer H., 1996, GEOMETRIC APPL FOURI, V61
  17. Kazhdan M., 2003, Symposium on Geometry Processing, P156
  18. Kazhdan M, 2009, LECT NOTES COMPUT SC, V5762, P100
  19. Khelifa WBH, 2008, I S BIOMED IMAGING, P1275
  20. Martini F. H., 1992, FUNDAMENTALS ANATOMY
  21. Muller H, 2004, INT J MED INFORM, V73, P1, DOI 10.1016/j.ijmedinf.2003.11.024
  22. Ning Cao, 2009, Proceedings of the SPIE - The International Society for Optical Engineering, V7262, DOI 10.1117/12.812944
  23. ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
  24. Shenton ME, 2002, PSYCHIAT RES-NEUROIM, V115, P15, DOI 10.1016/S0925-4927(02)00025-2
  25. Smeulders AWM, 2000, IEEE T PATTERN ANAL, V22, P1349, DOI 10.1109/34.895972
  26. Standford, 2017, TECH REP
  27. Styner M, 2004, MED IMAGE ANAL, V8, P197, DOI 10.1016/j.media.2004.06.004
  28. Styner M, 2003, MED IMAGE ANAL, V7, P207, DOI 10.1016/S1361-8415(02)00110-X
  29. Yu F., 2011, 3 DIMENSIONAL MODEL