Orthostatic Hypotension and Cognitive Function: Cross-sectional Results From the ELSA-Brasil Study

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Citação
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, v.74, n.3, p.358-365, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The association between orthostatic hypotension (OH) and cognitive impairment is controversial, and most studies have investigated older white adults from Western Europe and the United States. Therefore, we investigated the association between OH and cognitive performance in a large and racially diverse sample of adults using cross-sectional data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). OH was defined when systolic blood pressure decreased 20 mmHg and/or diastolic blood pressure decreased 10 mmHg from supine to standing position. We investigated the association between OH and composite global cognition, memory, verbal fluency (VF), and Trail Making Test z-scores, using multiple linear regression models. We also investigated the association of orthostatic hypertension and systolic blood pressure/diastolic blood pressure changes with cognitive performance, as well as the interaction between OH and compensatory heart rate after postural change on cognitive performance. We evaluated 12,826 participants (mean age = 51.5 9.0 years, 46% male, 53% white). Participants with OH (4% of the sample) had poorer z-scores for VF ( = 0.108, 95% confidence interval = 0.189; 0.025, p = .01) than participants without OH. Orthostatic hypertension was also associated with worse performance on the VF test ( = 0.080, 95% confidence interval = 0.157; 0.003, p = .04). Systolic blood pressure orthostatic change had a nonlinear association with VF. The interaction terms between OH and compensatory increase in heart rate for the Trail Making Test z-score (p = .09) was borderline significant, suggesting that participants who lack compensatory heart rate after postural change might have poorer performance. OH and orthostatic hypertension were associated with poorer performance on the VF test in participants from Brazil.
Palavras-chave
Hypotension, Orthostatic, Hypertension, Cognition, Dementia
Referências
  1. Albert MS, 2011, ALZHEIMERS DEMENT, V7, P270, DOI 10.1016/j.jalz.2011.03.008
  2. Alvarez JA, 2006, NEUROPSYCHOL REV, V16, P17, DOI 10.1007/s11065-006-9002-x
  3. Angelousi A, 2014, J HYPERTENS, V32, P1562, DOI 10.1097/HJH.0000000000000235
  4. Bennett DA, 2012, CURR ALZHEIMER RES, V9, P646
  5. Bertolucci PHF, 2001, ARQ NEURO-PSIQUIAT, V59, P532, DOI 10.1590/S0004-282X2001000400009
  6. Czajkowska J, 2010, J GERONTOL A-BIOL, V65, P870, DOI 10.1093/gerona/glq068
  7. Passos VMD, 2014, SAO PAULO MED J, V132, P170, DOI 10.1590/1516-3180.2014.1323646
  8. Elmstahl S, 2014, CLIN INTERV AGING, V9, P1993, DOI 10.2147/CIA.S72316
  9. Feeney J, 2016, CLIN AUTON RES, V26, P127, DOI 10.1007/s10286-016-0340-3
  10. Fessel J, 2006, NAT CLIN PRACT NEPHR, V2, P424, DOI 10.1038/ncpneph0228
  11. Freeman R, 2011, CLIN AUTON RES, V21, P69, DOI 10.1007/s10286-011-0119-5
  12. Frewen J, 2014, J GERONTOL A-BIOL, V69, P878, DOI 10.1093/gerona/glt171
  13. Frewen J, 2014, J AM GERIATR SOC, V62, P117, DOI 10.1111/jgs.12592
  14. GREENLIEF CL, 1985, PERCEPT MOTOR SKILL, V61, P1283, DOI 10.2466/pms.1985.61.3f.1283
  15. Guaraldi P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085020
  16. Holm H, 2017, EUR J EPIDEMIOL, V32, P327, DOI 10.1007/s10654-017-0228-0
  17. Idiaquez J, 2011, J NEUROL SCI, V305, P22, DOI 10.1016/j.jns.2011.02.033
  18. Kim JS, 2012, NEUROLOGY, V79, P1323, DOI 10.1212/WNL.0b013e31826c1acd
  19. LEWIS G, 1992, PSYCHOL MED, V22, P465, DOI 10.1017/S0033291700030415
  20. Mehrabian S, 2010, J NEUROL SCI, V299, P45, DOI 10.1016/j.jns.2010.08.056
  21. Mill JG, 2013, REV SAUDE PUBL, V47, P54, DOI 10.1590/S0034-8910.2013047003851
  22. MORRIS JC, 1989, NEUROLOGY, V39, P1159
  23. Perlmuter LC, 2013, AM J THER, V20, P279, DOI 10.1097/MJT.0b013e31828bfb7f
  24. Poda R, 2012, NEUROL SCI, V33, P469, DOI 10.1007/s10072-011-0746-6
  25. Rawlings AM, 2014, ANN INTERN MED, V161, P785, DOI 10.7326/M14-0737
  26. Rose KM, 2006, CIRCULATION, V114, P630, DOI 10.1161/CIRCULATIONHA.105.598722
  27. Rose KM, 2010, NEUROEPIDEMIOLOGY, V34, P1, DOI 10.1159/000255459
  28. Sambati L, 2014, NEUROL SCI, V35, P951, DOI 10.1007/s10072-014-1686-8
  29. Schmidt MI, 2015, INT J EPIDEMIOL, V44, P68, DOI 10.1093/ije/dyu027
  30. Schoon Y, 2013, AM J ALZHEIMERS DIS, V28, P47, DOI 10.1177/1533317512466692
  31. Shao Z, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00772
  32. Sperling R, 2014, NEURON, V84, P608, DOI 10.1016/j.neuron.2014.10.038
  33. Viramo P, 1999, J AM GERIATR SOC, V47, P600, DOI 10.1111/j.1532-5415.1999.tb02576.x
  34. Vloet LCM, 2005, J GERONTOL A-BIOL, V60, P1271, DOI 10.1093/gerona/60.10.1271
  35. Wolters FJ, 2016, PLOS MED, V13, DOI 10.1371/journal.pmed.1002143
  36. World Health Organization, 2004, INT STAT CLASS DIS R, V1
  37. Yap PLK, 2008, DEMENT GERIATR COGN, V26, P239, DOI 10.1159/000160955