Carbapenem-resistant Pseudomonas aeruginosa carrying bla(VIM-36) assigned to ST308: Indicated non-virulence in a Galleria mellonella model

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, v.16, p.92-97, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Based on pulsed-field gel electrophoresis (PFGE) profile, whole-genome sequencing (WGS) of eight carbapenem-resistant Pseudomonas aeruginosa isolates from a bone marrow transplant unit in Sao Paulo, Brazil, was performed to investigate the presence of resistance and virulence genes as well as to determine the sequence type (ST) by multilocus sequence typing (MLST). Methods: The initial phenotypic susceptibility pattern of the isolates was determined by VITEK (R) 2. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method for amikacin, meropenem and colistin. WGS was performed using an Illumina MiSeq system. A Galleria mellonella infection model was used to evaluate the virulence of the strains. Results: WGS demonstrated that mutations in genes encoding outer membrane proteins and efflux pumps in an isolate harbouring bla(VIM-36) (ST308) differed from those in isolates harbouring bla(SPM)(ST277). The mexTgene harboured a mutation resulting in a frameshift in all isolates; in addition, the oprD gene of the bla(VIM-36)-carrying isolate had an insertion leading to a frameshift. Virulence genes did not differ between ST277 and ST308 strains. Moreover, only two isolates harbouring bla(SPM) showed virulence in the G. mellonella model, killing 100% of larvae after 18-24 h. Conclusions: P. aeruginosa carrying bla(VIM-36) belonging to ST308 was identified for the first time in our hospital. Although the virulence gene profiles were similar in isolates carrying bla(SPM )and the isolate carrying bla(VIM-36), only two isolates harbouring bla(SPM )showed virulence in the G. mellonella model.
Palavras-chave
Pseudomonas aeruginosa, Multidrug resistance, Carbapenemase, Metallo-beta-lactamase, bla(VIM-36), Nosocomial infection
Referências
  1. Arias CA, 2009, NEW ENGL J MED, V360, P439, DOI 10.1056/NEJMp0804651
  2. Assefa S, 2009, BIOINFORMATICS, V25, P1968, DOI 10.1093/bioinformatics/btp347
  3. Castanheira M, 2007, MICROB DRUG RESIST, V13, P130, DOI 10.1089/mdr.2007.728
  4. Castanheira M, 2014, J ANTIMICROB CHEMOTH, V69, P1804, DOI 10.1093/jac/dku048
  5. Chaves L, 2017, J MED MICROBIOL, V66, P1722, DOI [10.1099/jmm.0.000631, 10.1099/jmm.]
  6. Clinical and Laboratory Standards Institute, 2017, M100S27 CLSI
  7. El Salabi A, 2010, ANTIMICROB AGENTS CH, V54, P582, DOI 10.1128/AAC.00719-09
  8. Estepa V, 2017, ENFERM INFEC MICR CL, V35, P141, DOI 10.1016/j.eimc.2015.12.014
  9. Gales AC, 2003, DIAGN MICR INFEC DIS, V45, P77, DOI 10.1016/S0732-8893(02)00500-X
  10. Hong DJ, 2015, INFECT CHEMOTHER, V47, P81, DOI 10.3947/ic.2015.47.2.81
  11. Koch G, 2014, METHODS MOL BIOL, V1149, P681, DOI 10.1007/978-1-4939-0473-0_52
  12. Labarca JA, 2016, CRIT REV MICROBIOL, V42, P276, DOI 10.3109/1040841X.2014.940494
  13. Li G, 2016, BIOSCIENCE REP, V36, DOI 10.1042/BSR20160282
  14. Lister PD, 2009, CLIN MICROBIOL REV, V22, P582, DOI 10.1128/CMR.00040-09
  15. Moyo S, 2015, ANTIMICROB AGENTS CH, V59, P682, DOI 10.1128/AAC.01436-13
  16. Seemann T, 2014, BIOINFORMATICS, V30, P2068, DOI 10.1093/bioinformatics/btu153
  17. Silva FM, 2011, MICROB DRUG RESIST, V17, P215, DOI 10.1089/mdr.2010.0140
  18. Turton JF, 2015, J CLIN MICROBIOL, V53, P2622, DOI 10.1128/JCM.00505-15
  19. Viedma E, 2012, EMERG INFECT DIS, V18, P1235, DOI 10.3201/eid1808.111234
  20. Yong D, 2012, ANTIMICROB AGENTS CH, V56, P6154, DOI 10.1128/AAC.05654-11