Syzygium cumini Leaf Extract Reverts Hypertriglyceridemia via Downregulation of the Hepatic XBP-1s/PDI/MTP Axis in Monosodium L-Glutamate-Induced Obese Rats

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Autores
FRANCA, Lucas Martins
COELHO, Caio Fernando Ferreira
FREITAS, Larissa Nara Costa
SOUZA, Ivana Leticia Santos
CHAGAS, Vinicyus Teles
PAES, Antonio Marcus de Andrade
Citação
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, article ID 9417498, 14p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Syzygium cumini is used worldwide for the treatment of metabolic syndrome-associated outcomes. Previously, we described the antihypertriglyceridemic effect of the hydroethanolic extract of S. cumini leaf (HESc) in monosodium L-glutamate- (MSG-) induced obese rats. This study sought to investigate the molecular mechanisms underlying the antihypertriglyceridemic effect of HESc in MSG-obese rats. Newborn male Wistar rats were injected subcutaneously with MSG (4.0 g/kg/day, obese group) or saline 1.25% (1.0 mL/kg/day, lean group), from 2nd through 10th postnatal day. At 8 weeks old, obese rats started to be orally treated with HESc (0.5 or 1.0 g/kg/day, n = 7) or saline 0.9% (1 mL/kg/day, n = 7). Lean rats received saline solution (1 mL/kg/day, n = 7). Upon 8-week treatment, animals were euthanized for blood and tissue collection. Another set of adult nonobese Wistar rats was used for the assessment of HESc acute effects on Triton WR1339-induced hypertriglyceridemia. HESc reduced weight gain, as well as adipose tissue fat pads, without altering food intake of obese rats. HESc restored fasting serum glucose, triglycerides, total cholesterol, and free fatty acids, as well as insulin sensitivity, to levels similar to lean rats. Additionally, HESc halved the triglyceride content into very low-density lipoprotein particles, as well as healed liver steatosis, in obese rats. Hepatic protein expression of the endoplasmic reticulum chaperone GRP94 was decreased by HESc, which also downregulated the hepatic triglyceride secretion pathway by reducing the splicing of X-box binding protein 1 (XBP-1s), as well as protein disulfide isomerase (PDI) and microsomal triglyceride transfer protein (MTP) translational levels. This action was further corroborated by the acute inhibitory effect of HESc on triglyceride accumulation on Triton WR1339-treated rats. Our data support the downregulation of the XBP- ls/PDI/MTP axis in the liver of MSG-obese rats as a novel feasible mechanism for the antihypertriglyceridemic effect promoted by the polyphenolic phytocomplex present in S. cumini leaf.
Palavras-chave
Referências
  1. Ayyanar Muniappan, 2012, Asian Pacific Journal of Tropical Biomedicine, V2, P240, DOI 10.1016/S2221-1691(12)60050-1
  2. Balbo SL, 2007, ENDOCRINE, V31, P142, DOI 10.1007/s12020-007-0021-z
  3. Baldissera G, 2016, J ETHNOPHARMACOL, V194, P1012, DOI 10.1016/j.jep.2016.10.056
  4. Da Silva NCB, 2012, B LATINOAM CARIBE PL, V11, P435
  5. BERNARDIS L, 2002, THE JOURNAL OF ENDOC, V40, P527, DOI 10.1677/JOE.0.0400527
  6. Boren J, 2014, CLIN CHIM ACTA, V431, P131, DOI 10.1016/j.cca.2014.01.015
  7. Bozaykut P, 2016, MECH AGEING DEV, V157, P17, DOI 10.1016/j.mad.2016.07.001
  8. BRASIL R., 2009, RELACAO NAC PLANT ME
  9. Cercato LM, 2015, J ETHNOPHARMACOL, V176, P286, DOI 10.1016/j.jep.2015.10.038
  10. Chagas VT, 2018, OXID MED CELL LONGEV, DOI 10.1155/2018/5386079
  11. Chagas VT, 2015, FRONT PHARMACOL, V6, DOI 10.3389/fphar.2015.00259
  12. Chang CJ, 2012, EVID-BASED COMPL ALT, V2012, P11, DOI 10.1155/2012/787152
  13. Choi AY, 2010, NEUROCHEM INT, V57, P143, DOI 10.1016/j.neuint.2010.05.006
  14. Choi HN, 2014, NUTR RES PRACT, V8, P544, DOI 10.4162/nrp.2014.8.5.544
  15. Cnop M, 2012, TRENDS MOL MED, V18, P59, DOI 10.1016/j.molmed.2011.07.010
  16. COX JS, 1993, CELL, V73, P1197, DOI 10.1016/0092-8674(93)90648-A
  17. Fabbrini E, 2010, HEPATOLOGY, V51, P679, DOI 10.1002/hep.23280
  18. Franca LM, 2014, BIOCHEM BIOPH RES CO, V443, P725, DOI 10.1016/j.bbrc.2013.12.042
  19. Freedman BD, 2005, J BIOL CHEM, V280, P17118, DOI 10.1074/jbc.M407539200
  20. HA J, 2002, THE JOURNAL OF NUTRI, V144, P799, DOI 10.3945/JN.113.186957
  21. Hao SN, 2018, CARCINOGENESIS, V39, P1488, DOI 10.1093/carcin/bgy136
  22. Helmstadter A, 2008, PHARMAZIE, V63, P91, DOI 10.1691/ph.2008.7335
  23. HERREMA H, 2002, THE JOURNAL OF BIOLO, V291, P17394, DOI 10.1074/JBC.M116.728949
  24. Jerico MM, 2009, J VET DIAGN INVEST, V21, P203, DOI 10.1177/104063870902100204
  25. Kim DS, 2008, IMMUNOPHARM IMMUNOT, V30, P257, DOI [10.1080/08923970701812530, 10.1080/08923970701812530 ]
  26. Kleiner DE, 2005, HEPATOLOGY, V41, P1313, DOI 10.1002/hep.20701
  27. Lee AH, 2008, SCIENCE, V320, P1492, DOI 10.1126/science.1158042
  28. MILLARD WJ, 1982, ENDOCRINOLOGY, V110, P540, DOI 10.1210/endo-110-2-540
  29. Ning J, 2011, ENDOCRINOLOGY, V152, P2247, DOI 10.1210/en.2010-1036
  30. Nivala AM, 2013, METABOLISM, V62, P753, DOI 10.1016/j.metabol.2012.12.001
  31. OLIVEIRA AC, 2002, J ETHNOPHARMACOL, V102, P465
  32. Park CH, 2010, J MED FOOD, V13, P1216, DOI 10.1089/jmf.2009.1380
  33. Piperi C, 2016, TRENDS ENDOCRIN MET, V27, P119, DOI 10.1016/j.tem.2016.01.001
  34. Prabhakar PK, 2008, CURR DIABETES REV, V4, P291, DOI 10.2174/157339908786241124
  35. Rizzo M, 2011, CURR PHARM DESIGN, V17, P943, DOI 10.2174/138161211795428768
  36. Rodriguez J, 2015, EUR J NUTR, V54, P377, DOI 10.1007/s00394-014-0717-9
  37. Sanches JR, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00048
  38. Seiva FRF, 2012, FOOD CHEM TOXICOL, V50, P3556, DOI 10.1016/j.fct.2012.07.009
  39. Sharma AK, 2012, J PHARMACOL SCI, V119, P205, DOI 10.1254/jphs.11184FP
  40. SHARMA B, 2002, FOOD AND CHEMICAL TO, V46, P2376, DOI 10.1016/J.FCT.2008.03.020
  41. Shoulders MD, 2013, CELL REP, V3, P1279, DOI 10.1016/j.celrep.2013.03.024
  42. SHULMAN G, 2002, THE NEW ENGLAND JOUR, V371, P1131, DOI 10.1056/NEJMra1011035
  43. Silva RM, 2001, PLANTA MED, V67, P763, DOI 10.1055/s-2001-18360
  44. Simental-Mendia LE, 2016, ANN HEPATOL, V15, P715, DOI 10.5604/16652681.1212431
  45. Simental-Mendia Luis E., 2008, Metabolic Syndrome and Related Disorders, V6, P299, DOI 10.1089/met.2008.0034
  46. So JS, 2012, CELL METAB, V16, P487, DOI 10.1016/j.cmet.2012.09.004
  47. Tang D, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00586
  48. Thiyagarajan G, 2016, CHEM BIOL DRUG DES, V88, P302, DOI 10.1111/cbdd.12757
  49. Vasudeva N, 2012, CHIN J INTEGR MED, V18, P473, DOI 10.1007/s11655-012-1120-0
  50. Wang SY, 2012, CELL METAB, V16, P473, DOI 10.1016/j.cmet.2012.09.003
  51. Wierzbicki AS, 2009, CURR VASC PHARMACOL, V7, P277, DOI 10.2174/157016109788340703
  52. Yang MH, 2013, J ETHNOPHARMACOL, V149, P490, DOI 10.1016/j.jep.2013.07.003
  53. Yoshida H, 2001, CELL, V107, P881, DOI 10.1016/S0092-8674(01)00611-0
  54. Younossi ZM, 2016, HEPATOLOGY, V64, P73, DOI 10.1002/hep.28431
  55. Zhang XQ, 2014, WORLD J GASTROENTERO, V20, P1768, DOI 10.3748/wjg.v20.i7.1768
  56. Zhang YJ, 2015, MOLECULES, V20, P21138, DOI 10.3390/molecules201219753