Gray matter networks and cognitive impairment in multiple sclerosis

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Autores
SCHOONHEIM, Menno M.
STEENWIJK, Martijn D.
VRENKEN, Hugo
EIJLERS, Anand J. C.
KILLESTEIN, Joep
WATTJES, Mike P.
BARKHOF, Frederik
TIJMS, Betty M.
Citação
MULTIPLE SCLEROSIS JOURNAL, v.25, n.3, p.382-391, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Coordinated patterns of gray matter morphology can be represented as networks, and network disruptions may explain cognitive dysfunction related to multiple sclerosis (MS). Objective: To investigate whether single-subject gray matter network properties are related to impaired cognition in MS. Methods: We studied 148 MS patients (99 female) and 33 healthy controls (HC, 21 female). Seven network parameters were computed and compared within MS between cognitively normal and impaired subjects, and associated with performance on neuropsychological tests in six cognitive domains with regression models. Analyses were controlled for age, gender, whole-brain gray matter volumes, and education level. Results: Compared to MS subjects with normal cognition, MS subjects with cognitive impairment showed a more random network organization as indicated by lower lambda values (all p<0.05). Worse average cognition and executive function were associated with lower lambda values. Impaired information processing speed, working memory, and attention were associated with lower clustering values. Conclusion: Our findings indicate that MS subjects with a more randomly organized gray matter network show worse cognitive functioning, suggesting that single-subject gray matter graphs may capture neurological dysfunction due to MS.
Palavras-chave
Single-subject gray matter networks, cognitive impairment, magnetic resonance imaging, multiple sclerosis
Referências
  1. Alexander-Bloch A, 2013, NAT REV NEUROSCI, V14, P322, DOI 10.1038/nrn3465
  2. Bohbot VD, 2007, J NEUROSCI, V27, P10078, DOI 10.1523/JNEUROSCI.1763-07.2007
  3. Boringa JB, 2001, MULT SCLER, V7, P263, DOI 10.1191/135245801680209385
  4. Chard DT, 2010, J MAGN RESON IMAGING, V32, P223, DOI 10.1002/jmri.22214
  5. Chiaravalloti ND, 2008, LANCET NEUROL, V7, P1139, DOI 10.1016/S1474-4422(08)70259-X
  6. Daams M, 2016, MULT SCLER J, V22, P608, DOI 10.1177/1352458515596598
  7. Fleischer V, 2017, MULT SCLER J, V23, P432, DOI 10.1177/1352458516651503
  8. Geurts JJG, 2008, LANCET NEUROL, V7, P841, DOI 10.1016/S1474-4422(08)70191-1
  9. Gong GL, 2009, CEREB CORTEX, V19, P524, DOI 10.1093/cercor/bhn102
  10. He Y, 2008, J NEUROSCI, V28, P4756, DOI 10.1523/JNEUROSCI.0141-08.2008
  11. He Y, 2009, BRAIN, V132, P3366, DOI 10.1093/brain/awp089
  12. Humphries MD, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002051
  13. Lerch JP, 2006, NEUROIMAGE, V31, P993, DOI 10.1016/j.neuroimage.2006.01.042
  14. Li Y, 2013, HUM BRAIN MAPP, V34, P3376, DOI 10.1002/hbm.22158
  15. Morgen K, 2006, NEUROIMAGE, V30, P891, DOI 10.1016/j.neuroimage.2005.10.032
  16. Murphy CF, 2007, BIOL PSYCHIAT, V61, P1007, DOI 10.1016/j.biopsych.2006.07.028
  17. Noble WS, 2009, NAT BIOTECHNOL, V27, P1135, DOI 10.1038/nbt1209-1135
  18. Polman CH, 2011, ANN NEUROL, V69, P292, DOI 10.1002/ana.22366
  19. Rocca MA, 2010, NEUROLOGY, V74, P1252, DOI 10.1212/WNL.0b013e3181d9ed91
  20. Schoonheim MM, 2014, MULT SCLER J, V20, P1058, DOI 10.1177/1352458513516892
  21. Schoonheim MM, 2015, NEUROLOGY, V84, P776, DOI 10.1212/WNL.0000000000001285
  22. Schoonheim MM, 2012, NEUROLOGY, V79, P1754, DOI 10.1212/WNL.0b013e3182703f46
  23. Schoonheim MM, 2013, HUM BRAIN MAPP, V34, P52, DOI 10.1002/hbm.21424
  24. Shu N, 2011, CEREB CORTEX, V21, P2565, DOI 10.1093/cercor/bhr039
  25. Steenwijk MD, 2016, BRAIN, V139, P115, DOI 10.1093/brain/awv337
  26. Steenwijk MD, 2013, NEUROIMAGE-CLIN, V3, P462, DOI 10.1016/j.nicl.2013.10.003
  27. Tewarie P, 2014, HUM BRAIN MAPP, V35, P5946, DOI 10.1002/hbm.22596
  28. Tijms BM, 2015, SCHIZOPHR RES, V168, P1, DOI 10.1016/j.schres.2015.08.025
  29. Tijms BM, 2014, BRAIN CONNECT, V4, P337, DOI 10.1089/brain.2013.0209
  30. Tijms BM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058921
  31. Tijms BM, 2012, CEREB CORTEX, V22, P1530, DOI 10.1093/cercor/bhr221
  32. Tzourio-Mazoyer N, 2002, NEUROIMAGE, V15, P273, DOI 10.1006/nimg.2001.0978
  33. VanEssen DC, 1997, NATURE, V385, P313, DOI 10.1038/385313a0
  34. Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
  35. Zalesky A, 2010, NEUROIMAGE, V50, P970, DOI 10.1016/j.neuroimage.2009.12.027
  36. Zhang W, 2016, HUM BRAIN MAPP, V37, P3003, DOI 10.1002/hbm.23222