A simplified approach using Taqman low-density array for medulloblastoma subgrouping

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
CRUZEIRO, Gustavo Alencastro Veiga
SALOMAO, Karina Bezerra
BIAGI JR., Carlos Alberto Oliveira de
BAUMGARTNER, Martin
STURM, Dominik
LIRA, Regia Caroline Peixoto
MAGALHAES, Taciani de Almeida
MILAN, Mirella Baroni
SILVEIRA, Vanessa da Silva
SAGGIORO, Fabiano Pinto
Citação
ACTA NEUROPATHOLOGICA COMMUNICATIONS, v.7, article ID 33, 10p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450K to assess methylation profile along with 390MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450k. Similarly, we tested this simplified set of gene signatures in 763MB samples and wewere able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k=4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making.
Palavras-chave
Medulloblastoma, Molecular subgroups, Brazilian cohort, Real-time PCR
Referências
  1. Capper D, 2018, NATURE, V555, P469, DOI 10.1038/nature26000
  2. Cavalli FMG, 2017, CANCER CELL, V31, P737, DOI 10.1016/j.ccell.2017.05.005
  3. Charrad M, 2012, NBCLUST PACKAGE FIND
  4. Gomez S, 2018, CLIN CANCER RES, V24, P1355, DOI 10.1158/1078-0432.CCR-17-2243
  5. Gu ZG, 2016, BIOINFORMATICS, V32, P2847, DOI 10.1093/bioinformatics/btw313
  6. Gu ZG, 2014, BIOINFORMATICS, V30, P2811, DOI 10.1093/bioinformatics/btu393
  7. Holgado BL, 2017, ANNU REV GENOM HUM G, V18, P143, DOI 10.1146/annurev-genom-091416-035434
  8. Hovestadt V, 2013, ACTA NEUROPATHOL, V125, P913, DOI 10.1007/s00401-013-1126-5
  9. Ivanov DP, 2016, J BIOTECHNOL, V236, P10, DOI 10.1016/j.jbiotec.2016.07.028
  10. Karkuciska-Wickowska A, 2018, J NEUROONCOL, DOI 10.1007/s11060-018-2797-5
  11. Kassambra A, 2016, FACTOEXTRA EXTRACT V
  12. Kaur K, 2016, BRAIN PATHOL, V26, P334, DOI 10.1111/bpa.12293
  13. Korshunov A, 2017, ACTA NEUROPATHOL, V134, P965, DOI 10.1007/s00401-017-1776-9
  14. Krijthek JH, 2015, RTSNE T DISTRIBUTED
  15. Kunder R, 2013, NEURO-ONCOLOGY, V15, P1644, DOI 10.1093/neuonc/not123
  16. Leal LF, 2018, NEUROPATHOLOGY, V38, P475, DOI 10.1111/neup.12508
  17. Louis DN, 2016, ACTA NEUROPATHOL, V131, P803, DOI 10.1007/s00401-016-1545-1
  18. Northcott PA, 2012, NAT REV CANCER, V12, P818, DOI 10.1038/nrc3410
  19. Northcott PA, 2012, ACTA NEUROPATHOL, V123, P615, DOI 10.1007/s00401-011-0899-7
  20. Otero JC, 1996, BLOOD, V88, P377
  21. Pei YX, 2016, CANCER CELL, V29, P311, DOI 10.1016/j.ccell.2016.02.011
  22. Ramaswamy V, 2016, ACTA NEUROPATHOL, V131, P821, DOI 10.1007/s00401-016-1569-6
  23. Ramaswamy V, 2016, NEURO-ONCOLOGY, V18, P291, DOI 10.1093/neuonc/nou357
  24. Ramaswamy V, 2013, LANCET ONCOL, V14, P1200, DOI 10.1016/S1470-2045(13)70449-2
  25. Rego EM, 2011, MEDITERR J HEMATOL I, V3, DOI [10.4084/MIHID.2011.049, 10.4084/MJHID.2011.049]
  26. Schwalbe EC, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-13644-1
  27. Schwalbe EC, 2017, LANCET ONCOL, V18, P958, DOI 10.1016/S1470-2045(17)30243-7
  28. Shih DJH, 2014, J CLIN ONCOL, V32, P886, DOI 10.1200/JCO.2013.50.9539
  29. Sturm D, 2012, CANCER CELL, V22, P425, DOI 10.1016/j.ccr.2012.08.024
  30. Triscott J, 2013, CANCER RES, V73, P6734, DOI 10.1158/0008-5472.CAN-12-4331
  31. Wang J, 2018, ANNU REV NEUROSCI, V41, P207, DOI [10.1146/annurev-neuro-070815-013838, 10.1146/annurev-neuro-080317-013838]
  32. Wickham H., 2016, GGPLOT2 ELEGANT GRAP
  33. Xu R, 2005, IEEE T NEURAL NETWOR, V16, P645, DOI 10.1109/TNN.2005.845141