CD99 Expression in Glioblastoma Molecular Subtypes and Role in Migration and Invasion

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2019
Editora
MDPI
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.20, n.5, article ID 1137, 17p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Glioblastoma (GBM) is the most aggressive type of brain tumor, with an overall survival of 17 months under the current standard of care therapy. CD99, an over-expressed transmembrane protein in several malignancies, has been considered a potential target for immunotherapy. To further understand this potentiality, we analyzed the differential expression of its two isoforms in human astrocytoma specimens, and the CD99 involved signaling pathways in glioma model U87MG cell line. CD99 was also analyzed in GBM molecular subtypes. Whole transcriptomes by RNA-Seq of CD99-siRNA, and functional in vitro assays in CD99-shRNA, that are found in U87MG cells, were performed. Astrocytoma of different malignant grades and U87MG cells only expressed CD99 isoform 1, which was higher in mesenchymal and classical than in proneural GBM subtypes. Genes related to actin dynamics, predominantly to focal adhesion, and lamellipodia/filopodia formation were down-regulated in the transcriptome analysis, when CD99 was silenced. A decrease in tumor cell migration/invasion, and dysfunction of focal adhesion, were observed in functional assays. In addition, a striking morphological change was detected in CD99-silenced U87MG cells, further corroborating CD99 involvement in actin cytoskeleton rearrangement. Inhibiting the overexpressed CD99 may improve resectability and decrease the recurrence rate of GBM by decreasing tumor cells migration and invasion.
Palavras-chave
glioblastoma, CD99, migration, cytoskeleton, transcriptome
Referências
  1. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI 10.1117/1.3589100
  2. Alberti I, 2002, FASEB J, V16, P1946, DOI 10.1096/fj.02-0049fje
  3. Bernard G, 2000, EUR J IMMUNOL, V30, P3061, DOI 10.1002/1521-4141(200010)30:10<3061::AID-IMMU3061>3.0.CO;2-M
  4. Byun HJ, 2006, J BIOL CHEM, V281, P34833, DOI 10.1074/jbc.M605483200
  5. Calderwood DA, 2004, J CELL SCI, V117, P657, DOI 10.1242/jcs.01014
  6. Celik H, 2018, ONCOGENE, V37, P2181, DOI 10.1038/s41388-017-0080-4
  7. Cha J, 2016, SCI REP-UK, V6, DOI 10.1038/srep24912
  8. Chaturvedi A, 2014, MOL BIOL CELL, V25, P2695, DOI 10.1091/mbc.E14-01-0007
  9. Clucas J, 2015, J CELL SCI, V128, P1253, DOI 10.1242/jcs.170027
  10. Dayel MJ, 2004, PLOS BIOL, V2, P476, DOI 10.1371/journal.pbio.0020091
  11. DeLuca DS, 2012, BIOINFORMATICS, V28, P1530, DOI 10.1093/bioinformatics/bts196
  12. DIMILLA PA, 1991, BIOPHYS J, V60, P15, DOI 10.1016/S0006-3495(91)82027-6
  13. Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635
  14. Dworzak MN, 2004, LEUKEMIA, V18, P703, DOI 10.1038/sj.leu.2403303
  15. Galatro Thais F, 2017, MedicalExpress (São Paulo, online), V4, pM170505, DOI 10.5935/medicalexpress.2017.05.05
  16. Hahn JH, 1997, J IMMUNOL, V159, P2250
  17. Hahn MJ, 2000, FEBS LETT, V470, P350, DOI 10.1016/S0014-5793(00)01330-2
  18. Huang DW, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-9-r183
  19. Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211
  20. Huang DW, 2009, NUCLEIC ACIDS RES, V37, P1, DOI 10.1093/nar/gkn923
  21. Iacob Gabriel, 2009, J Med Life, V2, P386
  22. Jung TY, 2013, ANTICANCER RES, V33, P2525
  23. Keunen O, 2014, ADV DRUG DELIVER REV, V76, P98, DOI 10.1016/j.addr.2014.07.010
  24. Kim SH, 2000, BLOOD, V95, P294
  25. Krakhmal NV, 2015, ACTA NATURAE, V7, P17
  26. Lee HJ, 2002, EXP MOL MED, V34, P177, DOI 10.1038/emm.2002.26
  27. Lee KJ, 2015, EXP CELL RES, V336, P211, DOI 10.1016/j.yexcr.2015.07.010
  28. Lee KJ, 2017, MOL CELL BIOL, V37, DOI 10.1128/MCB.00675-16
  29. Li B, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-323
  30. Liao Y, 2014, BIOINFORMATICS, V30, P923, DOI 10.1093/bioinformatics/btt656
  31. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  32. Lou O, 2007, J IMMUNOL, V178, P1136, DOI 10.4049/jimmunol.178.2.1136
  33. Louis DN, 2016, ACTA NEUROPATHOL, V131, P803, DOI 10.1007/s00401-016-1545-1
  34. MacGrath SM, 2012, J CELL SCI, V125, P1621, DOI 10.1242/jcs.093781
  35. Manara MC, 2018, GENES-BASEL, V9, DOI 10.3390/genes9030159
  36. Manara MC, 2016, ONCOTARGET, V7, P79925, DOI 10.18632/oncotarget.13160
  37. Meng JH, 2017, ONCOTARGET, V8, P41701, DOI 10.18632/oncotarget.16678
  38. Palecek SP, 1997, NATURE, V385, P537, DOI 10.1038/385537a0
  39. Pasello M, 2018, J CELL COMMUN SIGNAL, V12, P55, DOI 10.1007/s12079-017-0445-z
  40. Persson O, 2007, J NEURO-ONCOL, V85, P11, DOI 10.1007/s11060-007-9383-6
  41. Qin R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086446
  42. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  43. Schwartz MA, 2006, CELL, V125, P1223, DOI 10.1016/j.cell.2006.06.015
  44. Sciandra M, 2014, J BONE MINER RES, V29, P1295, DOI 10.1002/jbmr.2141
  45. Scotlandi K, 2007, ONCOGENE, V26, P6604, DOI 10.1038/sj.onc.1210481
  46. Seol Ho Jun, 2012, Genes Cancer, V3, P535, DOI 10.1177/1947601912473603
  47. Soomro SH, 2017, J PAK MED ASSOC, V67, P1410
  48. Urias U, 2014, J NEURO-ONCOL, V119, P59, DOI 10.1007/s11060-014-1462-x
  49. Verhaak RGW, 2010, CANCER CELL, V17, P98, DOI 10.1016/j.ccr.2009.12.020
  50. Wagner GP, 2012, THEOR BIOSCI, V131, P281, DOI 10.1007/s12064-012-0162-3
  51. Xu YY, 2015, CANCER BIOL MED, V12, P223, DOI 10.7497/j.issn.2095-3941.2015.0020
  52. Zhang JG, 2008, J NEURO-ONCOL, V88, P65, DOI 10.1007/s11060-008-9534-4
  53. Zhong J, 2010, J ONCOL, DOI 10.1155/2010/430142
  54. Zucchini C, 2014, ONCOGENE, V33, P1912, DOI 10.1038/onc.2013.152