Topography of C-11-Pittsburgh compound B uptake in Alzheimer's disease: a voxel-based investigation of cortical and white matter regions

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRASILEIRA PSIQUIATRIA
Citação
REVISTA BRASILEIRA DE PSIQUIATRIA, v.41, n.2, p.101-111, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: To compare results of positron emission tomography (PET) with carbon-11-labeled Pittsburgh compound B (C-11-PIB) obtained with cerebellar or global brain uptake for voxel intensity normalization, describe the cortical sites with highest tracer uptake in subjects with mild Alzheimer's disease (AD), and explore possible group differences in C-11-PIB binding to white matter. Methods: C-11-PIB PET scans were acquired from subjects with AD (n=17) and healthy elderly controls (n=19). Voxel-based analysis was performed with statistical parametric mapping (SPM). Results: Cerebellar normalization showed higher C-11-PIB uptake in the AD group relative to controls throughout the cerebral cortex, involving the lateral temporal, orbitofrontal, and superior parietal cortices. With global uptake normalization, greatest cortical binding was detected in the orbitofrontal cortex; decreased C-11-PIB uptake in white matter was found in the posterior hippocampal region, corpus callosum, pons, and internal capsule. Conclusion: The present case-control voxelwise C-11-PIB PET comparison highlighted the regional distribution of amyloid deposition in the cerebral cortex of mildly demented AD patients. Tracer uptake was highest in the orbitofrontal cortex. Decreased C-11-PIB uptake in white-matter regions in this patient population may be a marker of white-matter damage in AD.
Palavras-chave
Amyloid PET imaging, Alzheimer's disease, statistical parametric mapping
Referências
  1. Aalto S, 2009, EUR J NUCL MED MOL I, V36, P1651, DOI 10.1007/s00259-009-1174-1
  2. Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018
  3. Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
  4. Benzinger TLS, 2013, P NATL ACAD SCI USA, V110, pE4502, DOI 10.1073/pnas.1317918110
  5. BLESSED G, 1968, BRIT J PSYCHIAT, V114, P797, DOI 10.1192/bjp.114.512.797
  6. Borghammer P, 2009, NEUROIMAGE, V46, P981, DOI 10.1016/j.neuroimage.2009.03.021
  7. Brucki SMD, 2003, ARQ NEURO-PSIQUIAT, V61, P777, DOI 10.1590/S0004-282X2003000500014
  8. Buckner RL, 2012, NEUROIMAGE, V62, P1137, DOI 10.1016/j.neuroimage.2011.10.035
  9. Del-Ben Cristina Marta, 2001, Revista Brasileira de Psiquiatria, V23, P156, DOI 10.1590/S1516-44462001000300008
  10. Drzezga A, 2008, NEUROIMAGE, V39, P619, DOI 10.1016/j.neuroimage.2007.09.020
  11. Dukart J, 2010, NEUROIMAGE, V49, P1490, DOI 10.1016/j.neuroimage.2009.09.017
  12. Duran FLS, 2007, CLINICS, V62, P377, DOI 10.1590/S1807-59322007000400002
  13. Edison P, 2013, NEUROIMAGE, V70, P423, DOI 10.1016/j.neuroimage.2012.12.014
  14. Fjell AM, 2014, PROG NEUROBIOL, V117, P20, DOI 10.1016/j.pneurobio.2014.02.004
  15. Formaglio M, 2011, J NEUROL, V258, P1841, DOI 10.1007/s00415-011-6030-0
  16. Gomperts SN, 2008, NEUROLOGY, V71, P903, DOI 10.1212/01.wnl.0000326146.60732.d6
  17. Griebe M, 2011, J NEUROL, V258, P1451, DOI 10.1007/s00415-011-5956-6
  18. Maia ALG, 2006, ARQ NEURO-PSIQUIAT, V64, P485, DOI 10.1590/S0004-282X2006000300025
  19. Grimmer T, 2009, BIOL PSYCHIAT, V65, P927, DOI 10.1016/j.biopsych.2009.01.027
  20. Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010
  21. Hosokawa C, 2015, ANN NUCL MED, V29, P164, DOI 10.1007/s12149-014-0924-8
  22. Jack CR, 2018, ALZHEIMERS DEMENT, V14, P535, DOI 10.1016/j.jalz.2018.02.018
  23. Jack CR, 2017, ALZHEIMERS DEMENT, V13, P205, DOI 10.1016/j.jalz.2016.08.005
  24. Klunk WE, 2004, ANN NEUROL, V55, P306, DOI 10.1002/ana.20009
  25. Klunk WE, 2015, ALZHEIMERS DEMENT, V11, P1, DOI 10.1016/j.jalz.2014.07.003
  26. Kuntzelmann A, 2013, NEUROSCI LETT, V534, P12, DOI 10.1016/j.neulet.2012.11.026
  27. Lopresti BJ, 2005, J NUCL MED, V46, P1959
  28. Matsubara K, 2016, NEUROIMAGE, V143, P316, DOI 10.1016/j.neuroimage.2016.09.028
  29. McKhann GM, 2011, ALZHEIMERS DEMENT, V7, P263, DOI 10.1016/j.jalz.2011.03.005
  30. Meltzer CC, 2000, J NUCL MED, V41, P1842
  31. Miller GA, 2001, J ABNORM PSYCHOL, V110, P40, DOI 10.1037//0021-843X.110.1.40
  32. Mormino EC, 2014, JAMA NEUROL, V71, P1379, DOI 10.1001/jamaneurol.2014.2031
  33. Mosconi L, 2008, J NUCL MED, V49, P390, DOI 10.2967/jnumed.107.045385
  34. Pike KE, 2007, BRAIN, V130, P2837, DOI 10.1093/brain/awm238
  35. Price JC, 2005, J CEREBR BLOOD F MET, V25, P1528, DOI 10.1038/sj.jcbfm.9600146
  36. Quarantelli M, 2004, J NUCL MED, V45, P192
  37. Radanovic M, 2013, EXPERT REV NEUROTHER, V13, P483, DOI [10.1586/ERN.13.45, 10.1586/ern.13.45]
  38. Rieckmann A, 2016, NEUROBIOL AGING, V42, P177, DOI 10.1016/j.neurobiolaging.2016.03.016
  39. Sakono M, 2010, FEBS J, V277, P1348, DOI 10.1111/j.1742-4658.2010.07568.x
  40. Sepulcre J, 2013, BRAIN, V136, P2239, DOI 10.1093/brain/awt146
  41. Shin J, 2010, NEUROIMAGE, V52, P488, DOI 10.1016/j.neuroimage.2010.04.013
  42. Stankoff B, 2011, ANN NEUROL, V69, P673, DOI 10.1002/ana.22320
  43. Talairach J, 1988, COPLANAR STEREOTAXIC
  44. Thomas BA, 2011, EUR J NUCL MED MOL I, V38, P1104, DOI 10.1007/s00259-011-1745-9
  45. Tom SE, 2015, AM J PUBLIC HEALTH, V105, P408, DOI 10.2105/AJPH.2014.301935
  46. Toussaint PJ, 2012, NEUROIMAGE, V63, P936, DOI 10.1016/j.neuroimage.2012.03.091
  47. Wang PN, 2012, J ALZHEIMERS DIS, V30, P423, DOI 10.3233/JAD-2012-111304
  48. Yamane T, 2017, EUR J NUCL MED MOL I, V44, P850, DOI 10.1007/s00259-016-3591-2
  49. Yasuno F, 2015, INT J GERIATR PSYCH, V30, P919, DOI 10.1002/gps.4235
  50. Zhang Y, 2007, NEUROLOGY, V68, P13, DOI 10.1212/01.wnl.0000250326.77323.01