Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2019
Editora
CELL PRESS
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
BURRAGE, Lindsay C.
REYNOLDS, John J.
BARATANG, Nissan Vida
PHILLIPS, Jennifer B.
WEGNER, Jeremy
MCFARQUHAR, Ashley
HIGGS, Martin R.
CHRISTIANSEN, Audrey E.
LANZA, Denise G.
SEAVITT, John R.
Autor de Grupo de pesquisa
Univ Washington Ctr Mendelian
Undiagnosed Dis Network
Editores
Coordenadores
Organizadores
Citação
AMERICAN JOURNAL OF HUMAN GENETICS, v.104, n.3, p.422-438, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl(-/-) murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl(-/-) zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.
Palavras-chave
Referências
  1. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  2. Bainbridge MN, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-7-r68
  3. Bassett AR, 2013, CELL REP, V4, P220, DOI 10.1016/j.celrep.2013.06.020
  4. Boerkoel CF, 2002, NAT GENET, V30, P215, DOI 10.1038/ng821
  5. Campos EI, 2015, MOL CELL, V60, P697, DOI 10.1016/j.molcel.2015.08.005
  6. Challis D, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-8
  7. Cooper HA, 2000, AM J MED GENET, V92, P33, DOI 10.1002/(SICI)1096-8628(20000501)92:1<33::AID-AJMG6>3.0.CO;2-U
  8. Cottineau J, 2017, J CLIN INVEST, V127, P1991, DOI 10.1172/JCI90727
  9. Desmet FO, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp215
  10. Duro E, 2010, MOL CELL, V40, P632, DOI 10.1016/j.molcel.2010.10.023
  11. FANCONI S, 1983, HELV PAEDIATR ACTA, V38, P267
  12. Filocamo M.a, 2014, OPEN J BIORESOURCES
  13. Gripp KW, 2008, AM J MED GENET A, V146A, P468, DOI 10.1002/ajmg.a.32155
  14. Halevy RS, 2018, HUM MUTAT, V39, P811, DOI 10.1002/humu.23417
  15. Harley ME, 2016, NAT GENET, V48, P36, DOI 10.1038/ng.3451
  16. Hodgkins A, 2015, BIOINFORMATICS, V31, P3078, DOI 10.1093/bioinformatics/btv308
  17. Huang TH, 2018, MOL CELL, V69, P879, DOI 10.1016/j.molcel.2018.01.031
  18. Hunter KB, 2010, EUR J PEDIATR, V169, P801, DOI 10.1007/s00431-009-1115-9
  19. Jian XQ, 2014, NUCLEIC ACIDS RES, V42, P13534, DOI 10.1093/nar/gku1206
  20. Kircher M, 2014, NAT GENET, V46, P310, DOI 10.1038/ng.2892
  21. Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86
  22. LACHMAN RS, 1989, PEDIATR RADIOL, V19, P417, DOI 10.1007/BF02387640
  23. Langer LO, 1997, PEDIATR RADIOL, V27, P409, DOI 10.1007/s002470050157
  24. Langer LO, 1996, AM J MED GENET, V63, P20, DOI 10.1002/(SICI)1096-8628(19960503)63:1<20::AID-AJMG7>3.0.CO;2-W
  25. Lanza DG, 2018, BMC BIOL, V16, DOI 10.1186/s12915-018-0529-0
  26. Li H, 2010, BIOINFORMATICS, V26, P589, DOI 10.1093/bioinformatics/btp698
  27. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  28. Liu D, 2014, J GENET GENOMICS, V41, P43, DOI 10.1016/j.jgg.2013.11.004
  29. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  30. Lopes F, 2018, EUR J NEUROL, V25, pE123, DOI 10.1111/ene.13782
  31. Masuno M, 1996, AM J MED GENET, V66, P429, DOI 10.1002/(SICI)1096-8628(19961230)66:4<429::AID-AJMG8>3.0.CO;2-F
  32. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  33. Mo DL, 2018, CANCER LETT, V413, P1, DOI 10.1016/j.canlet.2017.10.021
  34. Morio T, 2017, INT J HEMATOL, V106, P357, DOI 10.1007/s12185-017-2263-8
  35. Nieminuszczy J, 2016, METHODS, V108, P92, DOI 10.1016/j.ymeth.2016.04.019
  36. Nishimura G, 1998, AM J MED GENET, V80, P288, DOI 10.1002/(SICI)1096-8628(19981116)80:3<288::AID-AJMG22>3.0.CO;2-A
  37. O'Connell BC, 2010, MOL CELL, V40, P645, DOI 10.1016/j.molcel.2010.10.022
  38. O'Donnell L, 2010, MOL CELL, V40, P619, DOI 10.1016/j.molcel.2010.10.024
  39. Offiah AC, 2001, J MED GENET, V38, P889, DOI 10.1136/jmg.38.12.889
  40. Piwko W, 2016, EMBO J, V35, P2584, DOI 10.15252/embj.201593132
  41. Piwko W, 2010, EMBO J, V29, P4210, DOI 10.1038/emboj.2010.304
  42. Reid JG, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-30
  43. Renshaw SA, 2006, BLOOD, V108, P3976, DOI 10.1182/blood-2006-05-024075
  44. Reynolds JJ, 2017, NAT GENET, V49, P537, DOI 10.1038/ng.3790
  45. Saredi G, 2016, NATURE, V534, P714, DOI 10.1038/nature18312
  46. Schlacher K, 2011, CELL, V145, P529, DOI 10.1016/j.cell.2011.03.041
  47. Schwarz JM, 2014, NAT METHODS, V11, P361, DOI 10.1038/nmeth.2890
  48. Sobreira Nara, 2015, Hum Mutat, V36, P928, DOI 10.1002/humu.22844
  49. Stewart GS, 1999, CELL, V99, P577, DOI 10.1016/S0092-8674(00)81547-0
  50. Szafranski P, 2017, MAMM GENOME, V28, P275, DOI 10.1007/s00335-017-9686-7
  51. Techer H, 2013, J MOL BIOL, V425, P4845, DOI 10.1016/j.jmb.2013.03.040
  52. Umpaichitra V, 2002, CLIN DYSMORPHOL, V11, P53, DOI 10.1097/00019605-200201000-00011
  53. Walker MB, 2007, BIOTECH HISTOCHEM, V82, P23, DOI 10.1080/10520290701333558
  54. Wang AT, 2015, MOL CELL, V59, P478, DOI 10.1016/j.molcel.2015.07.009
  55. Westerfield M., 2007, ZEBRAFISH BOOK GUIDE
  56. Yang YP, 2014, JAMA-J AM MED ASSOC, V312, P1870, DOI 10.1001/jama.2014.14601