A semi-synthetic neolignan derivative from dihydrodieugenol B selectively affects the bioenergetic system of Leishmania infantum and inhibits cell division

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Editora
NATURE PUBLISHING GROUP
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
AMARAL, Maiara
SOUSA, Fernanda S. de
SILVA, Thais A. Costa
TANIWAKI, Noemi N.
JOHNS, Deid Re M.
LAGO, Joao Henrique G.
ANDERSON, Edward A.
TEMPONE, Andre G.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
SCIENTIFIC REPORTS, v.9, article ID 6114, 15p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Leishmaniasis is a neglected disease that affects more than 12 million people, with a limited therapy. Plant-derived natural products represent a useful source of anti-protozoan prototypes. In this work, four derivatives were prepared from neolignans isolated from the Brazilian plant Nectandra leucantha, and their effects against intracellular amastigotes of Leishmania (L.) infantum evaluated in vitro. IC50 values between 6 and 35 mu M were observed and in silico predictions suggested good oral bioavailability, no PAINS similarities, and ADMET risks typical of lipophilic compounds. The most selective (SI > 32) compound was chosen for lethal action and immunomodulatory studies. This compound caused a transient depolarization of the plasma membrane potential and induced an imbalance of intracellular Ca2+, possibly resulting in a mitochondrial impairment and leading to a strong depolarization of the membrane potential and decrease of ATP levels. The derivative also interfered with the cell cycle of Leishmania, inducing a programmed cell death-like mechanism and affecting DNA replication. Further immunomodulatory studies demonstrated that the compound eliminates amastigotes via an independent activation of the host cell, with decrease levels of IL-10, TNF and MCP-1. Additionally, this derivative caused no hemolytic effects in murine erythrocytes and could be considered promising for future lead studies.
Palavras-chave
Referências
  1. Bakowska J. C., 2011, JOVE-J VIS EXP, V51, P2
  2. Benaim G, 2011, TROP BIOMED, V28, P471
  3. Boonstra J, 2004, GENE, V337, P1, DOI 10.1016/j.gene.2004.04.032
  4. Brandonisio O, 2002, CLIN EXP MED, V2, P125, DOI 10.1007/s102380200017
  5. Bruns RF, 2012, J MED CHEM, V55, P9763, DOI 10.1021/jm301008n
  6. Chicharro C, 2001, ANTIMICROB AGENTS CH, V45, P2441, DOI 10.1128/AAC.45.9.2441-2449.2001
  7. Choi IS, 2013, J PERIODONTOL, V84, P545, DOI 10.1902/jop.2012.120180
  8. da Costa-Silva TA, 2015, J NAT PROD, V78, P653, DOI 10.1021/np500809a
  9. Docampo R, 2015, CELL CALCIUM, V57, P194, DOI 10.1016/j.ceca.2014.10.015
  10. Dolai S, 2009, EUKARYOT CELL, V8, P1721, DOI 10.1128/EC.00198-09
  11. DUARTE MIS, 1992, ULTRASTRUCT PATHOL, V16, P475
  12. Grecco SD, 2015, PHARM BIOL, V53, P133, DOI 10.3109/13880209.2014.912238
  13. Grecco SS, 2017, CHEM-BIOL INTERACT, V277, P55, DOI 10.1016/j.cbi.2017.08.017
  14. Grecco SS, 2017, PHYTOMEDICINE, V24, P62, DOI 10.1016/j.phymed.2016.11.015
  15. GREEN SJ, 1990, J IMMUNOL, V144, P278
  16. Manzano JI, 2011, ANTIMICROB AGENTS CH, V55, P1045, DOI 10.1128/AAC.01545-10
  17. Iniesta V, 2002, PARASITE IMMUNOL, V24, P113, DOI 10.1046/j.1365-3024.2002.00444.x
  18. Jara M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180532
  19. Ji XY, 2019, CHEM SOC REV, V48, P1077, DOI 10.1039/c8cs00395e
  20. Kaczanowski S, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-44
  21. Kulkarni MM, 2009, J BIOL CHEM, V284, P15496, DOI 10.1074/jbc.M809079200
  22. Lago J. H. G., 2018, Drug discovery for leishmaniasis, P179
  23. Lagorce D, 2017, BIOINFORMATICS, V33, P3658, DOI 10.1093/bioinformatics/btx491
  24. Martins LF, 2016, J NAT PROD, V79, P2202, DOI 10.1021/acs.jnatprod.6b00256
  25. Morais C. G. V., 2015, BIOMED RES INT, V2015
  26. Morth JP, 2011, NAT REV MOL CELL BIO, V12, P60, DOI 10.1038/nrm3031
  27. Mukherjee SB, 2002, J BIOL CHEM, V277, P24717, DOI 10.1074/jbc.M201961200
  28. Neris PLN, 2013, EXP PARASITOL, V135, P307, DOI 10.1016/j.exppara.2013.07.007
  29. Newman DJ, 2016, J NAT PROD, V79, P629, DOI 10.1021/acs.jnatprod.5b01055
  30. Orrenius S, 2003, NAT REV MOL CELL BIO, V4, P552, DOI 10.1038/nrm1150
  31. Paris C, 2004, ANTIMICROB AGENTS CH, V48, P852, DOI 10.1128/AAC.48.3.852-859.2004
  32. Rahman K., 2018, SCI REPORTS, V8, P1
  33. Rea A, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002556
  34. Reimao JQ, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002842
  35. Reimao JQ, 2011, EXP PARASITOL, V128, P111, DOI 10.1016/j.exppara.2011.02.021
  36. Luque-Ortega JR, 2010, METHODS MOL BIOL, V618, P393, DOI 10.1007/978-1-60761-594-1_25
  37. Menna-Barreto RFS, 2014, BIOMED RES INT, DOI 10.1155/2014/614014
  38. Saporito L, 2013, INT J INFECT DIS, V 17, pE572, DOI 10.1016/j.ijid.2012.12.024
  39. Schenone M, 2013, NAT CHEM BIOL, V9, P232, DOI [10.1038/NCHEMBIO.1199, 10.1038/nchembio.1199]
  40. Sen N, 2004, J BIOL CHEM, V279, P52366, DOI 10.1074/jbc.M406705200
  41. STAUBER LA, 1958, J PROTOZOOL, V5, P269, DOI 10.1111/j.1550-7408.1958.tb02565.x
  42. TADA H, 1986, J IMMUNOL METHODS, V93, P157, DOI 10.1016/0022-1759(86)90183-3
  43. Tiwari N, 2018, MINI-REV MED CHEM, V18, P26, DOI 10.2174/1389557517666170425105129
  44. Valencia-Pacheco G, 2014, CYTOKINE, V69, P56, DOI 10.1016/j.cyto.2014.05.016
  45. van Griensven J, 2012, INFECT DIS CLIN N AM, V26, P309, DOI 10.1016/j.idc.2012.03.005
  46. Vannier-Santos MA, 2002, CURR PHARM DESIGN, V8, P297, DOI 10.2174/1381612023396230
  47. Vendrametto MC, 2010, PARASITOL INT, V59, P154, DOI 10.1016/j.parint.2009.12.009
  48. Weischenfeldt J., 2008, COLD SPRING HARBOR P, V3
  49. Westrop GD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136891
  50. WHO, 2017, INT NEGL TROP DIS GL
  51. WICKRAMASINGHE SN, 1987, CLIN LAB HAEMATOL, V9, P271, DOI 10.1111/j.1365-2257.1987.tb00091.x
  52. Wulsten I. F., 2017, MOLECULES, V22, P1