Association of Regional Cranial Base Deformity and Ultimate Structure in Crouzon Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2019
Editora
LIPPINCOTT WILLIAMS & WILKINS
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
LU, Xiaona
SAWH-MARTINEZ, Rajendra
WU, Robin
CABREJO, Raysa
STEINBACHER, Derek M.
ALPEROVICH, Michael
PERSING, John A.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PLASTIC AND RECONSTRUCTIVE SURGERY, v.143, n.6, p.1233E-1243E, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Considerable craniofacial features of Crouzon syndrome are attributed to the dysmorphology of the cranial base. As cephalometric studies have focused mainly on the facial deformity, rather than the cranial base, the underlying cause of deformity is not as well understood. Therefore, the authors compared the cranial base development of Crouzon syndrome to controls to trace the timing of deformity in the cranial base and face, to analyze their temporal correlation. Methods: Ninety computed tomographic scans were included (Crouzon, n = 36; controls, n = 54) and divided into five age subgroups. Craniofacial cephalometric measurements were analyzed by Materialise software. Results: The overall cranial base length in Crouzon syndrome compared with controls decreased 8 percent (p = 0.014) on average. The posterior cranial fossa shortening accounted for most of this reduction. The cranial base displaced with the distances from basion, sella, and ethmosphenoid to posterior nasal spine shortened by 21%, 18%, and 16%, respectively (all p < 0.01) during life. Although the cranial base angle on intracranial surface remains normal, the angles on facial surface narrowed were reduced. Conclusions: The cranial base deformity of Crouzon syndrome consists of the whole skull base and particularly anterior skull base shortening early, leading to a compensatory widened anterior skull base. However, when this widening did not compensate fully for the rapid enlargement of the brain, the posterior skull base displaced inferiorly and became kyphotic. The cranial base deformity develops sequentially anterior to posterior in a probable cascade of influence pattern.
Palavras-chave
Referências
  1. BACHMAYER DI, 1986, AM J ORTHOD DENTOFAC, V90, P420, DOI 10.1016/0889-5406(86)90007-7
  2. Belden CJ, 1997, AM J NEURORADIOL, V18, P811
  3. BHAT M, 1985, ANGLE ORTHOD, V55, P269
  4. Boutros S, 2007, J CRANIOFAC SURG, V18, P146, DOI 10.1097/01.scs.0000248655.53405.a7
  5. BURDI AR, 1986, CLEFT PALATE J, V23, P28
  6. CARR M, 1992, CLEFT PALATE-CRAN J, V29, P129, DOI 10.1597/1545-1569(1992)029<0129:COZMFS>2.3.CO;2
  7. Coll G, 2018, WORLD NEUROSURG, V109, pE460, DOI 10.1016/j.wneu.2017.09.208
  8. Coll G, 2015, NEUROSURGERY, V76, P571, DOI 10.1227/NEU.0000000000000676
  9. Driessen C, 2017, J CRANIO MAXILL SURG, V45, P1069, DOI 10.1016/j.jcms.2017.03.024
  10. Ferros I, 2015, EUR J ORTHODONT, V37, P403, DOI 10.1093/ejo/cju066
  11. Forrest CR, 2013, PLAST RECONSTR SURG, V131, p86E, DOI 10.1097/PRS.0b013e318272c12b
  12. Forte AJ, 2015, PLAST RECONSTR SURG, V136, P1054, DOI 10.1097/PRS.0000000000001693
  13. Forte AJ, 2014, PLAST RECONSTR SURG, V134, P285, DOI 10.1097/PRS.0000000000000360
  14. Goldstein JA, 2014, PLAST RECONSTR SURG, V134, P504, DOI 10.1097/PRS.0000000000000419
  15. Goodrich JT, 2005, CHILD NERV SYST, V21, P871, DOI 10.1007/s00381-004-1113-1
  16. Hariri F, 2018, J ORAL MAXILLOFAC SU, V76
  17. Holland D, 2014, JAMA NEUROL, V71, P1266, DOI 10.1001/jamaneurol.2014.1638
  18. Hoyte D A, 1991, Neurosurg Clin N Am, V2, P515
  19. Hughes DC, 2010, AM J NEURORADIOL, V31, P1268, DOI 10.3174/ajnr.A2107
  20. Knickmeyer RC, 2008, J NEUROSCI, V28, P12176, DOI 10.1523/JNEUROSCI.3479-08.2008
  21. KREIBORG S, 1993, J CRANIO MAXILL SURG, V21, P181, DOI 10.1016/S1010-5182(05)80478-0
  22. KREIBORG S, 1982, SCAND J PLAST RECONS, V16, P245, DOI 10.3109/02844318209026215
  23. KREIBORG S, 1981, SCAND J PLAST RECONS, V15, P187, DOI 10.3109/02844318109103433
  24. Lux CJ, 2004, CLEFT PALATE-CRAN J, V41, P304
  25. Nie XG, 2005, ACTA ODONTOL SCAND, V63, P127, DOI 10.1080/00016350510019847
  26. Nowinski D, 2012, CHILD NERV SYST, V28, P1537, DOI 10.1007/s00381-012-1809-6
  27. PERSING JA, 1987, ANN PLAS SURG, V18, P488, DOI 10.1097/00000637-198706000-00004
  28. PETERSONFALZONE SJ, 1981, CLEFT PALATE J, V18, P237
  29. Reid RR, 2007, CLIN PLAST SURG, V34, P357, DOI 10.1016/j.cps.2007.04.002
  30. Reitsma JH, 2012, CLEFT PALATE-CRAN J, V49, P185, DOI 10.1597/10-021
  31. Rijken BFM, 2013, PLAST RECONSTR SURG, V132, p993E, DOI [10.1097/01.prs.0b013e3182a8077e, 10.1097/PRS.0b013e3182a8077e]
  32. Spruijt B, 2016, PLAST RECONSTR SURG, V137, p112E, DOI 10.1097/PRS.0000000000001894
  33. Swanson JW, 2016, PLAST RECONSTR SURG, V137, p829E, DOI 10.1097/PRS.0000000000002127
  34. Taylor JA, 2017, PLAST RECONSTR SURG, V140, p82E, DOI 10.1097/PRS.0000000000003524