Effects of Mnemonic Strategy Training on Brain Activity and Cognitive Functioning of Left-Hemisphere Ischemic Stroke Patients

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Citação
NEURAL PLASTICITY, article ID 4172569, 16p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Memory dysfunction is one of the main cognitive impairments caused by stroke, especially associative memory. Therefore, cognitive training, such as face-name mnemonic strategy training, could be an important intervention for this group of patients. The goal of this study was to evaluate the behavioral effects of face-name mnemonic strategy training, along with the neural substrate behind these effects, in the left frontoparietal lobe stroke patients. Volunteers underwent 2 sessions of functional magnetic resonance imaging (fMRI) during face-name association task: one prior and the other after the cognitive training. The fMRI followed a block design task with three active conditions: trained face-name pairs, untrained face-name pairs, and a couple of repeated face-name pairs. Prior to each fMRI session, volunteers underwent neuropsychological assessment. Training resulted in better performance on delayed memory scores of HVLT-R, and on recognition on a generalization strategy task, as well as better performance in the fMRI task. Also, trained face-name pairs presented higher activation after training in default-mode network regions, such as the posterior cingulate cortex, precuneus, and angular gyrus, as well as in lateral occipital and temporal regions. Similarly, untrained face-name pairs also showed a nonspecific training effect in the right superior parietal cortex, right supramarginal gyrus, anterior intraparietal sulcus, and lateral occipital cortex. A correlation between brain activation and task performance was also found in the angular gyrus, superior parietal cortex, anterior intraparietal sulcus, and lateral occipital cortex. In conclusion, these results suggest that face-name mnemonic strategy training has the potential to improve memory performance and to foster brain activation changes, by the recruitment of contralesional areas from default-mode, frontoparietal, and dorsal attention networks as a possible compensation mechanism.
Palavras-chave
Referências
  1. Aben L, 2011, CEREBROVASC DIS, V31, P566, DOI 10.1159/000324627
  2. Balardin JB, 2015, FRONT AGING NEUROSCI, V7, DOI 10.3389/fnagi.2015.00147
  3. Batista AX, 2019, CORTEX, V113, P15, DOI 10.1016/j.cortex.2018.11.016
  4. Benedict R. H. B., 1997, BRIEF VISUAL SPATIAL
  5. Binder JR, 2009, CEREB CORTEX, V19, P2767, DOI 10.1093/cercor/bhp055
  6. Brandt J., 2001, HOPKINS VERBAL LEARN
  7. BRANSFORD JD, 1972, J VERB LEARN VERB BE, V11, P717, DOI 10.1016/S0022-5371(72)80006-9
  8. Cabeza R, 2008, NEUROPSYCHOLOGIA, V46, P1813, DOI 10.1016/j.neuropsychologia.2008.03.019
  9. Cabeza R, 2007, TRENDS COGN SCI, V11, P219, DOI 10.1016/j.tics.2007.02.005
  10. Cavanna AE, 2006, BRAIN, V129, P564, DOI 10.1093/brain/awl004
  11. Ciaramelli E, 2008, NEUROPSYCHOLOGIA, V46, P1828, DOI 10.1016/j.neuropsychologia.2008.03.022
  12. Cicerone KD, 2011, ARCH PHYS MED REHAB, V92, P519, DOI 10.1016/j.apmr.2010.11.015
  13. Connolly JD, 2016, EXP BRAIN RES, V234, P917, DOI 10.1007/s00221-015-4507-2
  14. Conway MA, 2000, PSYCHOL REV, V107, P261, DOI 10.1037//0033-295X.107.2.261
  15. Danker JF, 2010, PSYCHOL BULL, V136, P87, DOI 10.1037/a0017937
  16. De Luca R, 2018, J STROKE CEREBROVASC, V27, P1055, DOI 10.1016/j.jstrokecerebrovasdis.2017.11.008
  17. Dresler M, 2017, NEURON, V93, P1227, DOI 10.1016/j.neuron.2017.02.003
  18. Eklund A, 2016, P NATL ACAD SCI USA, V113, P7900, DOI 10.1073/pnas.1602413113
  19. Elliott M, 2014, BRAIN INJURY, V28, P1610, DOI 10.3109/02699052.2014.934921
  20. Fleming J., 1995, BRIT J OCCUPATIONAL, V98, P55, DOI [DOI 10.1177/030802269505800204, 10.1177/030802269505800204]
  21. Fransson P, 2008, NEUROIMAGE, V42, P1178, DOI 10.1016/j.neuroimage.2008.05.059
  22. Gillebert CR, 2011, BRAIN, V134, P1694, DOI 10.1093/brain/awr085
  23. Gobbini MI, 2006, BRAIN RES BULL, V71, P76, DOI 10.1016/j.brainresbull.2006.08.003
  24. Greicius MD, 2009, CEREB CORTEX, V19, P72, DOI 10.1093/cercor/bhn059
  25. GRONINGER L, 2002, THE AMERICAN JOURNAL, V119, P175, DOI 10.2307/20445333
  26. Hampstead BM, 2008, J INT NEUROPSYCH SOC, V14, P883, DOI 10.1017/S1355617708081009
  27. Hampstead BM, 2014, J INT NEUROPSYCH SOC, V20, P135, DOI 10.1017/S1355617713001306
  28. Hampstead BM, 2012, HIPPOCAMPUS, V22, P1652, DOI 10.1002/hipo.22006
  29. Hampstead BM, 2011, NEUROREHAB NEURAL RE, V25, P210, DOI 10.1177/1545968310382424
  30. Hanson SJ, 2007, BRAIN STRUCT FUNCT, V212, P231, DOI 10.1007/s00429-007-0160-2
  31. HASSABIS D, 2002, JOURNAL OF NEUROSCIE, V27, P14365, DOI 10.1523/JNEUROSCI.4549-07.2007
  32. Haxby JV, 2000, TRENDS COGN SCI, V4, P223, DOI 10.1016/S1364-6613(00)01482-0
  33. Hickok G, 2012, J COMMUN DISORD, V45, P393, DOI 10.1016/j.jcomdis.2012.06.004
  34. Hochstenbach J, 1998, J CLIN EXP NEUROPSYC, V20, P503, DOI 10.1076/jcen.20.4.503.1471
  35. Humphreys GF, 2015, CEREB CORTEX, V25, P3547, DOI 10.1093/cercor/bhu198
  36. Ishibashi R, 2016, COGN NEUROPSYCHOL, V33, P241, DOI 10.1080/02643294.2016.1188798
  37. Joassin F, 2004, PSYCHOPHYSIOLOGY, V41, P625, DOI 10.1111/j.1469-8986.2004.00181.x
  38. Johnson MK, 2006, SOC COGN AFFECT NEUR, V1, P56, DOI 10.1093/scan/nsl004
  39. Kaschel R, 2002, NEUROPSYCHOL REHABIL, V12, P127, DOI 10.1080/09602010143000211
  40. Kim H, 2009, BRAIN RES, V1282, P103, DOI 10.1016/j.brainres.2009.05.080
  41. Kirchhoff BA, 2006, NEURON, V51, P263, DOI 10.1016/j.neuron.2006.06.006
  42. Kirwan CB, 2004, HIPPOCAMPUS, V14, P919, DOI 10.1002/hipo.20014
  43. Kondo Y, 2005, NEUROIMAGE, V24, P1154, DOI 10.1016/j.neuroimage.2004.10.033
  44. Lieberman MD, 2009, SOC COGN AFFECT NEUR, V4, P423, DOI 10.1093/scan/nsp052
  45. LIM J, 2002, STROKE, V17, P256, DOI 10.5853/JOS.2015.17.3.256
  46. Lin ZC, 2014, J INT MED RES, V42, P659, DOI 10.1177/0300060513505809
  47. Makino Y, 2004, NEUROIMAGE, V23, P525, DOI 10.1016/j.neuroimage.2004.06.026
  48. Miotto EC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105987
  49. Miotto EC, 2014, ARQ NEURO-PSIQUIAT, V72, P663, DOI 10.1590/0004-282X20140120
  50. NELSON HE, 1976, CORTEX, V12, P313, DOI 10.1016/S0010-9452(76)80035-4
  51. Northoff G, 2004, TRENDS COGN SCI, V8, P102, DOI 10.1016/j.tics.2004.01.004
  52. Nyberg L, 2003, P NATL ACAD SCI USA, V100, P13728, DOI 10.1073/pnas.1735487100
  53. Nyberg L, 2000, P NATL ACAD SCI USA, V97, P11120, DOI 10.1073/pnas.97.20.11120
  54. Patterson K, 2007, NAT REV NEUROSCI, V8, P976, DOI 10.1038/nrn2277
  55. Regard M., 1981, COGNITIVE RIGIDITY F
  56. REITAN R. M., 1958, PERCEPT MOT SKILLS, V8, P271
  57. Ringe WK, 2002, ASSESSMENT, V9, P254, DOI 10.1177/1073191102009003004
  58. Shannon BJ, 2004, J NEUROSCI, V24, P10084, DOI 10.1523/JNEUROSCI.2625-04.2004
  59. Simon SS, 2018, FRONT AGING NEUROSCI, V10, DOI 10.3389/fnagi.2018.00342
  60. Simon Sharon Sanz, 2016, Dement. neuropsychol., V10, P113, DOI 10.1590/S1980-5764-2016DN1002007
  61. Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
  62. Srikanth VK, 2003, STROKE, V34, P1136, DOI 10.1161/01.STR.0000069161.35736.39
  63. Stamenova V, 2017, BRAIN INJURY, V31, P57, DOI 10.1080/02699052.2016.1222081
  64. Strauss E., 2006, COMPENDIUM NEUROPSYC
  65. Stringer A. Y., 2007, ECOLOGICALLY ORIENTE
  66. Sweegers CCG, 2014, NEUROIMAGE, V87, P138, DOI 10.1016/j.neuroimage.2013.10.063
  67. TATEMICHI TK, 1994, J NEUROL NEUROSUR PS, V57, P202, DOI 10.1136/jnnp.57.2.202
  68. Team J. A. S. P, 2018, JASP VERS 0 9 COMP S
  69. THICKPENNYDAVIS K, 2002, HTR, V22, P303, DOI 10.1097/01.HTR.0000290975.09496.93
  70. Tomasi D, 2011, CEREB CORTEX, V21, P2003, DOI 10.1093/cercor/bhq268
  71. TROYER A, 2002, THE JOURNALS OF GERO, V57, pP19, DOI 10.1093/geronb/57.1.P19
  72. Troyer AK, 1998, NEUROPSYCHOLOGIA, V36, P499, DOI 10.1016/S0028-3932(97)00152-8
  73. Tse D, 2007, SCIENCE, V316, P76, DOI 10.1126/science.1135935
  74. TULVING E, 1973, PSYCHOL REV, V80, P359, DOI 10.1037/H0020071
  75. van Buuren M, 2014, J NEUROSCI, V34, P16662, DOI 10.1523/JNEUROSCI.2365-14.2014
  76. van der Linden M, 2017, J NEUROSCI, V37, P9474, DOI 10.1523/JNEUROSCI.3603-16.2017
  77. VANKESTEREN M, 2002, JOURNAL OF NEUROSCIE, V30, P15888, DOI 10.1523/JNEUROSCI.2674-10.2010
  78. Vilberg KL, 2008, NEUROPSYCHOLOGIA, V46, P1787, DOI 10.1016/j.neuropsychologia.2008.01.004
  79. Vincent JL, 2006, J NEUROPHYSIOL, V96, P3517, DOI 10.1152/jn.00048.2006
  80. WAGER T, 2002, COGN AFFECT BEHAV NE, V3, P255, DOI [DOI 10.3758/CABN.3.4.255, 10.3758/cabn.3.4.255]
  81. Wechsler D., 1997, WAIS 3 ADM SCORING M, V1997
  82. Winstein CJ, 2016, STROKE, V47, pE98, DOI 10.1161/STR.0000000000000098
  83. Woolrich MW, 2004, NEUROIMAGE, V21, P1732, DOI 10.1016/j.neuroimage.2003.12.023
  84. Yang SL, 2014, EVID-BASED COMPL ALT, DOI 10.1155/2014/962304