Association of type and intensity of physical activity with plasma biomarkers of inflammation and insulin response

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
LEE, Dong Hoon
WU, Kana
TABUNG, Fred K.
GIOVANNUCCI, Edward L.
Citação
INTERNATIONAL JOURNAL OF CANCER, v.145, n.2, p.360-369, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Several biological mechanisms linking physical activity with cancer have been proposed. However, the influence of specific components of physical activity (volume, type and intensity), and their interaction with adiposity and diet, on cancer-related biomarkers remain unclear. We used cross-sectional data on 7,219 men in the Health Professionals Follow-up Study (1992-1994) with C-reactive protein (CRP), interleukin-6 (IL6), tumor necrosis factor alpha receptor 2 (TNF alpha R2), adiponectin, C-peptide and triglycerides/high-density lipoprotein cholesterol ratio (TG/HDL). Details on physical activity, diet and adiposity were assessed by questionnaires. We used multivariable-adjusted linear regression analyses to estimate relative concentrations of biomarkers by physical activity. Total physical activity was favorably associated with all biomarkers in a fairly linear manner. Comparing the highest (63+ metabolic equivalent (MET)-hr/week) to the lowest (0-8.9 MET-hr/week) physical activity groups, the percent relative difference in concentration of biomarkers was -31% for CRP, -22% for IL6, -8% for TNF alpha R2, +9% for adiponectin, -22% for C-peptide, and -20% for TG/HDL. These differences were modestly attenuated after adjustment for adiposity. For the same total MET-hours of physical activity, the association was stronger for men engaging in both aerobic and resistance exercises compared to those engaging in aerobic only. However, no difference was found between those engaging in vigorous activities (>= 20% of total MET-hours) compared to those who did smaller amount of vigorous activities. Physical activity showed similar associations for these biomarkers regardless of adiposity and dietary pattern. In conclusion, high physical activity, preferably aerobic plus resistance training, was associated with favorable cancer-related biomarkers.
Palavras-chave
physical activity, diet, adiposity, inflammation, insulin, interaction
Referências
  1. AINSWORTH BE, 1993, MED SCI SPORT EXER, V25, P71, DOI 10.1249/00005768-199301000-00011
  2. Alessa HB, 2017, MED SCI SPORT EXER, V49, P1817, DOI 10.1249/MSS.0000000000001287
  3. Astrom Maj-Briit, 2010, Front Biosci (Schol Ed), V2, P96
  4. Bao Y, 2013, JNCI-J NATL CANCER I, V105, P95, DOI 10.1093/jnci/djs474
  5. Bird Stephen R, 2016, BMJ Open Sport Exerc Med, V2, pe000143, DOI 10.1136/bmjsem-2016-000143
  6. Brown JC, 2012, COMPR PHYSIOL, V2, P2775, DOI 10.1002/cphy.c120005
  7. Buffart LM, 2014, CANCER TREAT REV, V40, P327, DOI 10.1016/j.ctrv.2013.06.007
  8. ChasanTaber S, 1996, EPIDEMIOLOGY, V7, P81, DOI 10.1097/00001648-199601000-00014
  9. Chen L, 2013, CANCER CAUSE CONTROL, V24, P1837, DOI 10.1007/s10552-013-0261-6
  10. Cronin O, 2017, QJM-INT J MED, V110, P629, DOI 10.1093/qjmed/hcx091
  11. Donnelly JE, 2009, MED SCI SPORT EXER, V41, P459, DOI 10.1249/MSS.0b013e3181949333
  12. Fedewa MV, 2017, BRIT J SPORT MED, V51, P670, DOI 10.1136/bjsports-2016-095999
  13. Giovannucci E, 2001, J NUTR, V131, p3109S, DOI 10.1093/jn/131.11.3109S
  14. Giovannucci E, 2017, CANCER CAUSE CONTROL, V52, P826
  15. Giovannucci E, 2018, JNCI-J NATL CANCER I, V110, P935, DOI 10.1093/jnci/djy091
  16. Gong TT, 2015, INT J CANCER, V137, P1967, DOI 10.1002/ijc.29561
  17. Grontved A, 2012, ARCH INTERN MED, V172, P1306, DOI 10.1001/archinternmed.2012.3138
  18. Heikkila K, 2009, CANCER CAUSE CONTROL, V20, P15, DOI 10.1007/s10552-008-9212-z
  19. Hernandez AV, 2015, EUR J CANCER, V51, P2747, DOI 10.1016/j.ejca.2015.08.031
  20. International Agency for Research on Cancer (IARC), 2002, IARC HDB CANC PREV, V6
  21. Iyengar NM, 2016, J CLIN ONCOL, V34, P4270, DOI 10.1200/JCO.2016.67.4283
  22. Kang DW, 2017, CANCER EPIDEM BIOMAR, V26, P355, DOI 10.1158/1055-9965.EPI-16-0602
  23. Keating SE, 2017, OBES REV, V18, P943, DOI 10.1111/obr.12536
  24. Keum N, 2016, JAMA ONCOL, V2, P1146, DOI 10.1001/jamaoncol.2016.0740
  25. Kitahara CM, 2014, CANCER EPIDEM BIOMAR, V23, P2840, DOI 10.1158/1055-9965.EPI-14-0699-T
  26. Lauby-Secretan B, 2016, NEW ENGL J MED, V375, P794, DOI 10.1056/NEJMsr1606602
  27. Lee DH, 2017, BRIT J NUTR, V118, P858, DOI [10.1017/S0007114517002665, 10.1017/s0007114517002665]
  28. de Rezende LFM, 2018, BRIT J SPORT MED, V52, P826, DOI 10.1136/bjsports-2017-098391
  29. Mayeux Richard, 2004, NeuroRx, V1, P182, DOI 10.1602/neurorx.1.2.182
  30. McTiernan A, 2008, NAT REV CANCER, V8, P205, DOI 10.1038/nrc2325
  31. Moore SC, 2016, JAMA INTERN MED, V176, P816, DOI 10.1001/jamainternmed.2016.1548
  32. O'Flanagan CH, 2017, IARC WORK GROUP REP, V10
  33. Olson OC, 2017, SCIENCE, V358, P1130, DOI 10.1126/science.aao5801
  34. Pai JK, 2004, NEW ENGL J MED, V351, P2599, DOI 10.1056/NEJMoa040967
  35. Plowman SA, 2013, EXERCISE PHYSL HLTH
  36. RIMM EB, 1991, LANCET, V338, P464, DOI 10.1016/0140-6736(91)90542-W
  37. Rosner B, 2008, AM J EPIDEMIOL, V167, P653, DOI 10.1093/aje/kwm348
  38. Song MY, 2013, CANCER RES, V73, DOI 10.1158/1538-7445.AM2013-103
  39. Tabung FK, 2016, BRIT J NUTR, V116, P1787, DOI 10.1017/S0007114516003755
  40. Tabung FK, 2016, J NUTR, V146, P1560, DOI 10.3945/jn.115.228718
  41. Verheggen RJHM, 2016, OBES REV, V17, P664, DOI 10.1111/obr.12406
  42. Wang J, 2015, CANCER EPIDEM BIOMAR, V24, P1199, DOI 10.1158/1055-9965.EPI-15-0187
  43. Wei EK, 2005, JNCI-J NATL CANCER I, V97, P1688, DOI 10.1093/jnci/dji376
  44. Wolpin BM, 2013, JNCI-J NATL CANCER I, V105, P1027, DOI 10.1093/jnci/djt123
  45. World Cancer Research Fund/ American Institute for Cancer Research, CONT UPD PROJ EXP RE