Reaction time variability and attention-deficit/hyperactivity disorder: is increased reaction time variability specific to attention-deficit/hyperactivity disorder? Testing predictions from the default-mode interference hypothesis

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2019
Editora
SPRINGER WIEN
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SALUM, Giovanni A.
SATO, Joao R.
MANFRO, Arthur G.
PAN, Pedro M.
GADELHA, Ary
CASTELLANOS, Francisco X.
SONUGA-BARKE, Edmund
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
ADHD-ATTENTION DEFICIT AND HYPERACTIVITY DISORDERS, v.11, n.1, Special Issue, p.47-58, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Increased reaction time variability (RTV) is one of the most replicable behavioral correlates of attention-deficit/hyperactivity disorder (ADHD). However, this may not be specific to ADHD but a more general marker of psychopathology. Here we compare RT variability in individuals with ADHD and those with other childhood internalizing and externalizing conditions both in terms of standard (i.e., the standard deviation of reaction time) and alternative indices that capture low-frequency oscillatory patterns in RT variations over time thought to mark periodic lapses of attention in ADHD. A total of 667 participants (6-12years old) were classified into non-overlapping diagnostic groups consisting of children with fear disorders (n=91), distress disorders (n=56), ADHD (n=103), oppositional defiant or conduct disorder (ODD/CD; n=40) and typically developing controls (TDC; n=377). We used a simple two-choice reaction time task to measure reaction time. The strength of oscillations in RTs across the session was extracted using spectral analyses. Higher RTV was present in ADHD compared to all other disorder groups, effects that were equally strong across all frequency bands. Interestingly, we found that lower RTV to characterize ODD/CD relative to TDC, a finding that was more pronounced at lower frequencies. In general, our data support RTV as a specific marker of ADHD. RT variation across time in ADHD did not show periodicity in a specific frequency band, not supporting that ADHD RTV is the product of spontaneous periodic lapses of attention. Low-frequency oscillations may be particularly useful to differentiate ODD/CD from TDC.
Palavras-chave
Reaction time variability, State regulation, Attentional lapses, Oppositional defiant disorder, Conduct disorder
Referências
  1. Adamo N, 2012, J ATTEN DISORD
  2. Adamo N, 2014, EUR CHILD ADOLES PSY, V23, P69, DOI 10.1007/s00787-013-0428-4
  3. Angold A, 2012, J AM ACAD CHILD PSY, V51, P506, DOI 10.1016/j.jaac.2012.02.020
  4. Biederman J, 2005, AM J PSYCHIAT, V162, P1083, DOI 10.1176/appi.ajp.162.6.1083
  5. Bron TI, 2014, EUR NEUROPSYCHOPHARM, V24, P519, DOI 10.1016/j.euroneuro.2014.01.007
  6. Broyd SJ, 2009, NEUROSCI BIOBEHAV R, V33, P279, DOI 10.1016/j.neubiorev.2008.09.002
  7. Buzsaki G, 2004, SCIENCE, V304, P1926, DOI 10.1126/science.1099745
  8. Castellanos FX, 2005, BIOL PSYCHIAT, V57, P1416, DOI 10.1016/j.biopsych.2004.12.005
  9. Castellanos FX, 2002, NAT REV NEUROSCI, V3, P617, DOI 10.1038/nrn896
  10. Di Martino A, 2008, BIOL PSYCHIAT, V64, P607, DOI 10.1016/j.biopsych.2008.03.008
  11. Figueiredo VLM, 2001, ADAPTACAO BRASILEIRA
  12. Foreman D, 2009, J CHILD PSYCHOL PSYC, V50, P460, DOI 10.1111/j.1469-7610.2008.02017.x
  13. Fransson P, 2007, P NATL ACAD SCI USA, V104, P15531, DOI 10.1073/pnas.0704380104
  14. Gescheider GA, 2005, SOMATOSENS MOT RES, V22, P255, DOI 10.1080/08990220500420236
  15. Geurts HM, 2008, NEUROPSYCHOLOGIA, V46, P3030, DOI 10.1016/j.neuropsychologia.2008.06.013
  16. Gilden DL, 2009, COGNITIVE SCI, V33, P1441, DOI 10.1111/j.1551-6709.2009.01060.x
  17. GILDEN DL, 1995, SCIENCE, V267, P1837, DOI 10.1126/science.7892611
  18. Gillberg C, 2004, EUR CHILD ADOLES PSY, V13, P80, DOI 10.1007/s00787-004-1008-4
  19. Goodman A, 2011, SOC PSYCH PSYCH EPID, V46, P521, DOI 10.1007/s00127-010-0219-x
  20. Goodman R, 2000, J CHILD PSYCHOL PSYC, V41, P645, DOI 10.1017/S0021963099005909
  21. Helps SK, 2011, NEUROPSYCHOLOGY, V25, P711, DOI 10.1037/a0024479
  22. Hervey AS, 2006, CHILD NEUROPSYCHOL, V12, P125, DOI 10.1080/09297040500499081
  23. Hogan AM, 2005, DEVELOPMENTAL SCI, V8, P525, DOI 10.1111/j.1467-7687.2005.00444.x
  24. Huang-Pollock CL, 2012, J ABNORM PSYCHOL, V121, P360, DOI 10.1037/a0027205
  25. Johnson KA, 2008, NEUROPSYCHOLOGIA, V46, P1532, DOI 10.1016/j.neuropsychologia.2008.01.002
  26. Johnson KA, 2007, NEUROPSYCHOLOGIA, V45, P630, DOI 10.1016/j.neuropsychologia.2006.03.034
  27. Kapur S., 2012, MOL PSYCHIAT
  28. Karalunas SL, 2014, J CHILD PSYCHOL PSYC, V55, P685, DOI 10.1111/jcpp.12217
  29. Karalunas SL, 2012, NEUROPSYCHOLOGY, V26, P684, DOI 10.1037/a0029936
  30. Karalunas SL, 2012, J CHILD PSYCHOL PSYC
  31. Karantinos T, 2014, PSYCHIAT RES, V215, P26, DOI 10.1016/j.psychres.2013.10.031
  32. Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593
  33. Klein C, 2006, BIOL PSYCHIAT, V60, P1088, DOI 10.1016/j.biopsych.2006.04.003
  34. Kofler MJ, 2014, NEUROPSYCHOLOGY, V28, P459, DOI 10.1037/neu0000050
  35. Kofler MJ, 2013, CLIN PSYCHOL REV, V33, P795, DOI 10.1016/j.cpr.2013.06.001
  36. Kuhn S, 2011, J COGNITIVE NEUROSCI, V23, P2147, DOI 10.1162/jocn.2010.21564
  37. Kuntsi Jonna, 2012, Curr Top Behav Neurosci, V9, P67, DOI 10.1007/7854_2011_145
  38. Leth-Steensen C, 2000, ACTA PSYCHOL, V104, P167, DOI 10.1016/S0001-6918(00)00019-6
  39. Maniadaki K, 2006, EUR CHILD ADOLES PSY, V15, P132, DOI 10.1007/s00787-005-0514-3
  40. Martel MM, 2017, J ABNORM PSYCHOL, V126, P137, DOI 10.1037/abn0000205
  41. Metin B, 2013, NEUROPSYCHOLOGY, V27, P193, DOI 10.1037/a0031533
  42. Nagel BJ, 2011, J AM ACAD CHILD PSY, V50, P283, DOI 10.1016/j.jaac.2010.12.003
  43. Penttonen Markku, 2003, Thalamus & Related Systems, V2, P145, DOI 10.1016/S1472-9288(03)00007-4
  44. Philiastides MG, 2011, CURR BIOL, V21, P980, DOI 10.1016/j.cub.2011.04.034
  45. Sagvolden T, 2005, BEHAV BRAIN SCI, V28, P397, DOI 10.1017/S0140525X05000075
  46. Salum GA, 2014, PSYCHOL MED, V44, P3189, DOI 10.1017/S0033291714000919
  47. Salum GA, 2014, PSYCHOL MED, V44, P617, DOI 10.1017/S0033291713000639
  48. Salum GA, 2015, INT J METH PSYCH RES, V24, P58, DOI 10.1002/mpr.1459
  49. Sonuga-Barke EJS, 2007, NEUROSCI BIOBEHAV R, V31, P977, DOI 10.1016/j.neubiorev.2007.02.005
  50. Sonuga-Barke EJS, 2011, J CHILD PSYCHOL PSYC, V52, P917, DOI 10.1111/j.1469-7610.2011.02444.x
  51. TELLEGEN A, 1967, J CONSULT PSYCHOL, V31, P499, DOI 10.1037/h0024963
  52. Tye C, 2016, J CHILD PSYCHOL PSYC, V57, P1414, DOI 10.1111/jcpp.12608
  53. van Belle J, 2015, J CHILD PSYCHOL PSYC
  54. van Belle J, 2015, NEUROIMAGE-CLIN, V7, P132, DOI 10.1016/j.nicl.2014.11.014
  55. Wechsler D., 2002, WISC 3 ESCALA INTELI
  56. Weissman MM, 2000, ARCH GEN PSYCHIAT, V57, P675, DOI 10.1001/archpsyc.57.7.675
  57. Williams BR, 2007, J CLIN EXP NEUROPSYC, V29, P277, DOI 10.1080/13803390600678020