The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: A potential opportunity' for repurposing a clinically used oncological drug for the experimental therapy of sepsis

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Autores
AHMAD, Akbar
MELLO, Aline Haas de
SZCZESNY, Bartosz
TORO, Gabor
DRUZHYNA, Nadiya
Citação
PHARMACOLOGICAL RESEARCH, v.145, article ID UNSP 104263, 29p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Poly(ADP-ribose) polymerase (PARP) is involved in the pathogenesis of cell dysfunction, inflammation and organ failure during septic shock. The goal of the current study was to investigate the efficacy and safety of the clinically approved PARP inhibitor olaparib in experimental models of oxidative stress in vitro and in sepsis in vivo. In mice subjected to cecal ligation and puncture (CLP) organ injury markers, circulating and splenic immune cell distributions, circulating mediators, DNA integrity and survival was measured. In U937 cells subjected to oxidative stress, cellular bioenergetics, viability and DNA integrity were measured. Olaparib was used to inhibit PARP. The results show that in adult male mice subjected to CLP, olaparib (1-10 mg/kg i.p.) improved multiorgan dysfunction. Olaparib treatment reduced the degree of bacterial CFUs. Olaparib attenuated the increases in the levels of several circulating mediators in the plasma. In the spleen, the number of CD4 + and CD8 + lymphocytes were reduced in response to CLP; this reduction was inhibited by olaparib treatment. Treg but not Th17 lymphocytes increased in response to CLP; these cell populations were reduced in sepsis when the animals received olaparib. The Th17/Treg ratio was lower in CLP-olaparib group than in the CLP control group. Analysis of miRNA expression identified a multitude of changes in spleen and circulating white blood cell miRNA levels after CLP; olaparib treatment selectively modulated these responses. Olaparib extended the survival rate of mice subjected to CLP. In contrast to males, in female mice olaparib did not have significant protective effects in CLP. In aged mice olaparib exerted beneficial effects that were less pronounced than the effects obtained in young adult males. In in vitro experiments in U937 cells subjected to oxidative stress, olaparib (1-100 mu M) inhibited PARP activity, protected against the loss of cell viability, preserved NAD+ levels and improved cellular bioenergetics. In none of the in vivo or in vitro experiments did we observe any adverse effects of olaparib on nuclear or mitochondrial DNA integrity. In conclusion, olaparib improves organ function and extends survival in septic shock. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of septic shock.
Palavras-chave
Sepsis, Shock, Multiorgan dysfunction, DNA, Mitochondria, Cell death, Treg, Th17
Referências
  1. Ayala-Torres S, 2000, METHODS, V22, P135, DOI 10.1006/meth.2000.1054
  2. Berger NA, 2018, BRIT J PHARMACOL, V175, P192, DOI 10.1111/bph.13748
  3. Bochum Sylvia, 2018, Recent Results Cancer Res, V211, P217, DOI 10.1007/978-3-319-91442-8_15
  4. Bosch F, 2018, MILITARY MED RES, V5, DOI 10.1186/s40779-018-0182-5
  5. Brady P. N., 2018, MICROBIOL MOL BIOL R, P83
  6. Brunialti Milena Karina Colo, 2012, PLoS One, V7, pe37393, DOI 10.1371/journal.pone.0037393
  7. Brunyanszki A, 2015, MOL MED, V21, P666, DOI 10.2119/molmed.2015.00187
  8. Cao C, 2015, WORLD J EMERG MED, V6, P5, DOI 10.5847/wjem.j.1920-8642.2015.01.001
  9. Chevanne M, 2007, REJUV RES, V10, P191, DOI 10.1089/rej.2006.0514
  10. Coletta C, 2014, CRIT CARE, V18, DOI 10.1186/s13054-014-0511-3
  11. da Silva FP, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01389
  12. Drewry AM, 2014, SHOCK, V42, P383, DOI 10.1097/SHK.0000000000000234
  13. Du J., 2019, PHARM RES
  14. Goldfarb RD, 2002, CRIT CARE MED, V30, P974, DOI 10.1097/00003246-200205000-00004
  15. Gong H, 2018, EXP THER MED, V16, P3745, DOI 10.3892/etm.2018.6647
  16. Gupta DL, 2016, CYTOKINE, V88, P214, DOI 10.1016/j.cyto.2016.09.010
  17. Gupte R, 2017, GENE DEV, V31, P101, DOI 10.1101/gad.291518.116
  18. Hauser B, 2006, SHOCK, V25, P633, DOI 10.1097/01.shk.0000209561.61951.2e
  19. Jagtap P, 2005, NAT REV DRUG DISCOV, V4, P421, DOI 10.1038/nrd1718
  20. Jagtap P, 2002, CRIT CARE MED, V30, P1071, DOI 10.1097/00003246-200205000-00019
  21. Kingsley SMK, 2017, INFLAMM RES, V66, P553, DOI 10.1007/s00011-017-1031-9
  22. Korkmaz-Icoz S, 2018, BRIT J PHARMACOL, V175, P246, DOI 10.1111/bph.13983
  23. Krainz T, 2018, ACS CHEM BIOL, V13, P2868, DOI 10.1021/acschembio.8b00423
  24. Kunze F. A., 2019, TRENDS IMMUNOL
  25. Li B, 2017, J CLIN INVEST, V127, P3702, DOI 10.1172/JCI94012
  26. Long MX, 2009, IMMUNITY, V31, P921, DOI 10.1016/j.immuni.2009.09.022
  27. Luo XR, 2015, J BIOL CHEM, V290, P28675, DOI 10.1074/jbc.M115.661611
  28. Mabley JG, 2005, J PHARMACOL EXP THER, V315, P812, DOI 10.1124/jpet.105.090480
  29. Martin GS, 2006, CRIT CARE MED, V34, P15, DOI 10.1097/01.CCM.0000194535.82812.BA
  30. Martin GS, 2003, NEW ENGL J MED, V348, P1546, DOI 10.1056/NEJMoa022139
  31. Modis K, 2012, BIOCHEM PHARMACOL, V83, P633, DOI 10.1016/j.bcp.2011.12.014
  32. Mukhopadhyay P, 2017, J HEPATOL, V66, P589, DOI 10.1016/j.jhep.2016.10.023
  33. Murakami K, 2004, SHOCK, V21, P126, DOI 10.1097/01.shk.0000108397.56565.4a
  34. Nachtergaele S, 2017, RNA BIOL, V14, P156, DOI 10.1080/15476286.2016.1267096
  35. Pascal JM, 2018, DNA REPAIR, V71, P177, DOI 10.1016/j.dnarep.2018.08.022
  36. Sergi C, 2017, BIOMED PHARMACOTHER, V95, P153, DOI 10.1016/j.biopha.2017.08.066
  37. Soriano FG, 2006, CRIT CARE MED, V34, P1073, DOI 10.1097/01.CCM.0000206470.47721.8D
  38. Soriano FG, 2002, SHOCK, V17, P286, DOI 10.1097/00024382-200204000-00008
  39. Sulai NH, 2018, CLIN ADV HEMATOL ONC, V16, P491
  40. Szabo C, 1997, J CLIN INVEST, V100, P723, DOI 10.1172/JCI119585
  41. Szabo C, 1996, CIRC RES, V78, P1051, DOI 10.1161/01.RES.78.6.1051
  42. Szabo C, 1997, J EXP MED, V186, P1041, DOI 10.1084/jem.186.7.1041
  43. Szabo C, 1998, P NATL ACAD SCI USA, V95, P3867, DOI 10.1073/pnas.95.7.3867
  44. Szabo C, 1996, P NATL ACAD SCI USA, V93, P1753, DOI 10.1073/pnas.93.5.1753
  45. Szczesny B, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19216-1
  46. Szczesny B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143730
  47. Szczesny B, 2014, NUCLEIC ACIDS RES, V42, P13161, DOI 10.1093/nar/gku1089
  48. Tann AW, 2011, J BIOL CHEM, V286, P31975, DOI 10.1074/jbc.M110.215715
  49. Tapodi A., 2019, BIOCH PHARM
  50. Thorsell AG, 2017, J MED CHEM, V60, P1262, DOI 10.1021/acs.jmedchem.6b00990
  51. TRENTZSCH H, 2014, INJURY S3, V45, P20
  52. Tucsek Z, 2013, J GERONTOL A-BIOL, V68, P652, DOI 10.1093/gerona/gls232
  53. Ungvari Z, 2011, AM J PHYSIOL-HEART C, V301, pH363, DOI 10.1152/ajpheart.01134.2010
  54. van Loon B, 2010, DNA REPAIR, V9, P604, DOI 10.1016/j.dnarep.2010.03.004
  55. Veres B, 2004, J PHARMACOL EXP THER, V310, P247, DOI 10.1124/jpet.104.065151
  56. Walko TD, 2014, MOL MED, V20, P612, DOI 10.2119/molmed.2014.00156
  57. Wang G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079757
  58. Wang HJ, 2012, J TRAUMA ACUTE CARE, V73, P850, DOI 10.1097/TA.0b013e31825a7560
  59. Wang YM, 2018, EUR REV MED PHARMACO, V22, P6049, DOI 10.26355/eurrev_201809_15942
  60. Xu Z, 2011, J BIOL CHEM, V286, P21401, DOI 10.1074/jbc.M110.198630
  61. Yang HY, 2016, IMMUNITY, V45, P83, DOI 10.1016/j.immuni.2016.06.022
  62. Yuan M, 2009, EXP NEUROL, V217, P210, DOI 10.1016/j.expneurol.2009.02.012
  63. Zhang LS, 2015, INT J CLIN EXP PATHO, V8, P9824
  64. Zhou XY, 2008, J EXP MED, V205, P1983, DOI 10.1084/jem.20080707
  65. Zingarelli B, 1996, J IMMUNOL, V156, P350