Mutations in MAP3K1 that cause 46,XY disorders of sex development disrupt distinct structural domains in the protein

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
CHAMBERLIN, Adam
HUETHER, Robert
GRODEN, Michael
LIU, Hsiao-Mei
UPADHYAY, Kinnari
VIVIAN, O.
LERARIO, Antonio M.
Citação
HUMAN MOLECULAR GENETICS, v.28, n.10, p.1620-1628, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Missense mutations in the gene, MAP3K1, are a common cause of 46,XY gonadal dysgenesis, accounting for 15-20% of cases [Ostrer, 2014, Disorders of sex development (DSDs): an update. J. Clin. Endocrinol. Metab., 99, 1503-1509]. Functional studies demonstrated that all of these mutations cause a protein gain-of-function that alters co-factor binding and increases phosphorylation of the downstream MAP kinase pathway targets, MAPK11, MAP3K and MAPK1. This dysregulation of the MAP kinase pathway results in increased CTNNB1, increased expression of WNT4 and FOXL2 and decreased expression of SRY and SOX9. Unique and recurrent pathogenic mutations cluster in three semi-contiguous domains outside the kinase region of the protein, a newly identified N-terminal domain that shares homology with the Guanine Exchange Factor (residues Met164 to Glu231), a Plant HomeoDomain (residues Met442 to Trp495) and an ARMadillo repeat domain (residues Met566 to Glu862). Despite the presence of the mutation clusters and clinical data, there exists a dearth of mechanistic insights behind the development imbalance. In this paper, we use structural modeling and functional data of these mutations to understand alterations of the MAP3K1 protein and the effects on protein folding, binding and downstream target phosphorylation. We show that these mutations have differential effects on protein binding depending on the domains in which they occur. These mutations increase the binding of the RHOA, MAP3K4 and FRAT1 proteins and generally decrease the binding of RAC1. Thus, pathologies in MAP3K1 disrupt the balance between the pro-kinase activities of the RHOA and MAP3K4 binding partners and the inhibitory activity of RAC1.
Palavras-chave
Referências
  1. Apweiler R, 2013, NUCLEIC ACIDS RES, V41, pD43, DOI 10.1093/nar/gks1068
  2. Arboleda VA, 2014, NAT REV ENDOCRINOL, V10, P603, DOI 10.1038/nrendo.2014.130
  3. Bourne PE, 2004, NUCLEIC ACIDS RES, V32, pD223, DOI 10.1093/nar/gkh096
  4. Bromberg Y, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-S8-S8
  5. Catuara-Solarz S, 2016, ENEURO, V3, DOI 10.1523/ENEURO.0103-16.2016
  6. CHARDIN P, 1993, SCIENCE, V260, P1338, DOI 10.1126/science.8493579
  7. Charlaftis N, 2014, EMBO J, V33, P2581, DOI 10.15252/embj.201488351
  8. Duda DM, 2008, CELL, V134, P995, DOI 10.1016/j.cell.2008.07.022
  9. Eggers S, 2012, CHROMOSOME RES, V20, P215, DOI 10.1007/s10577-012-9274-3
  10. Erb I, 2016, THEOR BIOSCI, V135, P21, DOI 10.1007/s12064-015-0220-8
  11. Fanger GR, 1997, EMBO J, V16, P4961, DOI 10.1093/emboj/16.16.4961
  12. Finn RD, 2017, NUCLEIC ACIDS RES, V45, pD190, DOI 10.1093/nar/gkw1107
  13. Gallagher ED, 2004, J BIOL CHEM, V279, P1872, DOI 10.1074/jbc.M309525200
  14. Gierl MS, 2012, DEV CELL, V23, P1032, DOI 10.1016/j.devcel.2012.09.014
  15. Granados A, 2017, AM J MED GENET C, V175, P253, DOI 10.1002/ajmg.c.31559
  16. Groves MR, 1999, CURR OPIN STRUC BIOL, V9, P383, DOI 10.1016/S0959-440X(99)80052-9
  17. Hess B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q
  18. Howard AE, 2015, J BIOL CHEM, V290, P10149, DOI 10.1074/jbc.M114.633826
  19. Hu JL, 2010, MOL BRAIN, V3, DOI 10.1186/1756-6606-3-20
  20. Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5
  21. Jones DT, 1999, J MOL BIOL, V292, P195, DOI 10.1006/jmbi.1999.3091
  22. Kelley LA, 2015, NAT PROTOC, V10, P845, DOI 10.1038/nprot.2015.053
  23. Kim DE, 2004, NUCLEIC ACIDS RES, V32, pW526, DOI 10.1093/nar/gkh468
  24. Kulkarni K, 2011, J BIOL CHEM, V286, P25341, DOI 10.1074/jbc.M111.236455
  25. Kyriakis JM, 2012, PHYSIOL REV, V92, P689, DOI 10.1152/physrev.00028.2011
  26. Lechtenberg BC, 2016, NATURE, V529, P546, DOI 10.1038/nature16511
  27. Lee PA, 2006, PEDIATRICS, V118, pE488, DOI 10.1542/peds.2006-0738
  28. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  29. Loke J, 2012, CLIN GENET, V81, P272, DOI 10.1111/j.1399-0004.2011.01834.x
  30. Loke J, 2014, HUM MOL GENET, V23, P1073, DOI 10.1093/hmg/ddt502
  31. Lopez-Castilla A, 2015, J STRUCT BIOL, V190, P11, DOI 10.1016/j.jsb.2015.02.007
  32. Lu ZM, 2002, MOL CELL, V9, P945, DOI 10.1016/S1097-2765(02)00519-1
  33. Lucato CM, 2015, J BIOL CHEM, V290, P20827, DOI 10.1074/jbc.M115.660456
  34. Luo W, 2003, J BIOL CHEM, V278, P37451, DOI 10.1074/jbc.M305277200
  35. Mackerell AD, 2004, J COMPUT CHEM, V25, P1400, DOI 10.1002/jcc.20065
  36. Matsuura Y, 2004, NATURE, V432, P872, DOI 10.1038/nature03144
  37. Ostrer H, 2014, J CLIN ENDOCR METAB, V99, P1503, DOI 10.1210/jc.2013-3690
  38. Pearlman A, 2010, AM J HUM GENET, V87, P898, DOI 10.1016/j.ajhg.2010.11.003
  39. Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289
  40. Remmert M, 2012, NAT METHODS, V9, P173, DOI [10.1038/NMETH.1818, 10.1038/nmeth.1818]
  41. Schymkowitz J, 2005, NUCLEIC ACIDS RES, V33, pW382, DOI 10.1093/nar/gki387
  42. Suddason T, 2015, CELL DEATH DIFFER, V22, P540, DOI 10.1038/cdd.2014.239
  43. Tokuriki N, 2007, J MOL BIOL, V369, P1318, DOI 10.1016/j.jmb.2007.03.069
  44. Tong L, 2014, BIOSCIENCE REP, V34, P283, DOI 10.1042/BSR20140021
  45. Vetter IR, 1999, CELL, V97, P635, DOI 10.1016/S0092-8674(00)80774-6
  46. Warr N, 2012, DEV CELL, V23, P1020, DOI 10.1016/j.devcel.2012.09.016
  47. Wisniewska M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008625
  48. Worthylake DK, 2000, NATURE, V408, P682, DOI 10.1038/35047014
  49. Xia Y, 2007, MOL CELL BIOL, V27, P510, DOI 10.1128/MCB.01355-06
  50. Xing Y, 2003, GENE DEV, V17, P2753, DOI 10.1101/gad.1142603
  51. YORK DM, 1994, P NATL ACAD SCI USA, V91, P8715, DOI 10.1073/pnas.91.18.8715
  52. Zhang Y, 1999, J BIOL CHEM, V274, P35247, DOI 10.1074/jbc.274.49.35247