Heritability of semantic verbal fluency task using time-interval analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.14, n.6, article ID UNSP e0217814, 13p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Individual variability in word generation is a product of genetic and environmental influences. The genetic effects on semantic verbal fluency were estimated in 1,735 participants from the Brazilian Baependi Heart Study. The numbers of exemplars produced in 60 s were broken down into time quartiles because of the involvement of different cognitive processes-predominantly automatic at the beginning, controlled/executive at the end. Heritability in the unadjusted model for the 60-s measure was 0.32. The best-fit model contained age, sex, years of schooling, and time of day as covariates, giving a heritability of 0.21. Schooling had the highest moderating effect. The highest heritability (0.17) was observed in the first quartile, decreasing to 0.09, 0.12, and 0.0003 in the following ones. Heritability for average production starting point (intercept) was 0.18, indicating genetic influences for automatic cognitive processes. Production decay (slope), indicative of controlled processes, was not significant. The genetic influence on different quartiles of the semantic verbal fluency test could potentially be exploited in clinical practice and genome-wide association studies.
Palavras-chave
Referências
  1. Almasy L, 1998, AM J HUM GENET, V62, P1198, DOI 10.1086/301844
  2. Almasy Laura, 2010, Cold Spring Harb Protoc, V2010, DOI 10.1101/pdb.top77
  3. Antila M, 2007, AM J MED GENET B, V144B, P802, DOI 10.1002/ajmg.b.30538
  4. Ardila A, 2007, INT HDB CROSS CULTUR, P181
  5. Ardila A, 2006, INT J PSYCHOL, V41, P324, DOI 10.1080/00207590500345542
  6. Ardila A, 2010, ARCH CLIN NEUROPSYCH, V25, P689, DOI 10.1093/arclin/acq079
  7. Beijamini F, 2016, SCI REP-UK, V6, DOI 10.1038/srep39283
  8. Blokland GAM, 2017, SCHIZOPHRENIA BULL, V43, P788, DOI 10.1093/schbul/sbw146
  9. Brucki SMD, 2004, BRAZ J MED BIOL RES, V37, P1771, DOI 10.1590/S0100-879X2004001200002
  10. Cattel RB, 1948, GUIDE MENTAL TESTING
  11. Cavaco S, 2015, APPL NEUROPSYCH-ADUL, V22, P321, DOI 10.1080/23279095.2014.927767
  12. Costafreda SG, 2011, BMC PSYCHIATRY, V11, DOI 10.1186/1471-244X-11-18
  13. Cox AJ, 2014, NEUROBIOL AGING, V35, DOI 10.1016/j.neurobiolaging.2014.03.005
  14. Crowe SF, 1998, J CLIN EXP NEUROPSYC, V20, P391, DOI 10.1076/jcen.20.3.391.810
  15. de Andrade M, 1999, GENET EPIDEMIOL, V17, P64, DOI 10.1002/(SICI)1098-2272(1999)17:1<64::AID-GEPI5>3.0.CO;2-M
  16. de Oliveira CM, 2008, BMC MED GENET, V9, DOI 10.1186/1471-2350-9-32
  17. Demetriou E, 2017, J INT NEUROPSYCH SOC, V23, P44, DOI 10.1017/S1355617716000825
  18. Fears SC, 2014, JAMA PSYCHIAT, V71, P375, DOI 10.1001/jamapsychiatry.2013.4100
  19. Fernaeus SE, 1998, J CLIN EXP NEUROPSYC, V20, P137, DOI 10.1076/jcen.20.2.137.1170
  20. Gauderman WJ, 2003, GENET EPIDEMIOL, V25, pS18, DOI 10.1002/gepi.10280
  21. Giubilei F, 2008, AGE AGEING, V37, P640, DOI 10.1093/ageing/afn132
  22. Hermo XG, 2014, PSICOTHEMA, V26, P1, DOI 10.7334/psicothema2012.210
  23. Greenwood TA, 2011, J ALZHEIMERS DIS, V27, P897, DOI 10.3233/JAD-2011-110782
  24. Gustavson DE, 2018, BEHAV GENET, V48, P361, DOI 10.1007/s10519-018-9910-6
  25. Henry JD, 2004, NEUROPSYCHOLOGIA, V42, P1212, DOI 10.1016/j.neuropsychologia.2004.02.001
  26. Horimoto ARVR, 2012, BMC MED GENET, V13, DOI 10.1186/1471-2350-13-9
  27. Hurks PPM, 2010, CHILD NEUROPSYCHOL, V16, P366, DOI 10.1080/09297041003671184
  28. Hyde JS, 2016, CURR OPIN NEUROBIOL, V38, P53, DOI 10.1016/j.conb.2016.02.007
  29. Iskandar S, 2016, AGING NEUROPSYCHOL C, V23, P1, DOI 10.1080/13825585.2015.1028326
  30. Kraan C, 2013, APPL NEUROPSYCHOL, V5, P5
  31. Lee T, 2018, BEHAV GENET, V48, P187, DOI 10.1007/s10519-018-9897-z
  32. Lezak M. D, 2012, NEUROPSYCHOLOGICAL A
  33. McDowd J, 2011, NEUROPSYCHOLOGY, V25, P210, DOI 10.1037/a0021531
  34. McGue M, 2001, PSYCHOL AGING, V16, P272, DOI 10.1037/0882-7974.16.2.272
  35. Meinzer M, 2009, J COGNITIVE NEUROSCI, V21, P2007, DOI 10.1162/jocn.2009.21219
  36. Mitrushina M., 2005, HDB NORMATIVE DATA N
  37. OBER BA, 1986, J CLIN EXP NEUROPSYC, V8, P75, DOI 10.1080/01688638608401298
  38. Olabarrieta-Landa L, 2015, NEUROREHABILITATION, V37, P515, DOI 10.3233/NRE-151279
  39. Rodriguez-Aranda C, 2006, J NEUROL, V253, P1414, DOI 10.1007/s00415-006-0225-9
  40. Rosen WG, 1980, JOURNAL OF CLINICAL, V2
  41. Sauzeon H, 2004, BRAIN LANG, V89, P192, DOI 10.1016/S0093-934X(03)00367-5
  42. Shao Z, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00772
  43. Taporoski TP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144255
  44. Thiele K, 2016, J CLIN EXP NEUROPSYC, V38, P764, DOI 10.1080/13803395.2016.1163327
  45. Troyer AK, 2000, J CLIN EXP NEUROPSYC, V22, P370, DOI 10.1076/1380-3395(200006)22:3;1-V;FT370
  46. Visscher PM, 2008, NAT REV GENET, V9, P255, DOI 10.1038/nrg2322
  47. von Stumm S, 2015, INTELLIGENCE, V48, P30, DOI 10.1016/j.intell.2014.10.002
  48. Wilson RS, 2011, J ALZHEIMERS DIS, V23, P249, DOI 10.3233/JAD-2010-101515
  49. Woodley of Menie M. A., 2018, EVOLUTIONARY PSYCHOL, V4, P272, DOI [10.1007/s40806-017-0131-7, DOI 10.1007/S40806-017-0131-7]