Normalized glandular dose (DgN) coefficients from experimental mammographic x-ray spectra

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2019
Editora
IOP PUBLISHING LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SANTOS, Josilene C.
TOMAL, Alessandra
COSTA, Paulo R.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PHYSICS IN MEDICINE AND BIOLOGY, v.64, n.10, article ID 105010, 15p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Mean glandular dose is the quantity used for dosimetry in mammography and depends on breast-related characteristics, such as thickness and density, and on the x-ray spectrum used for breast imaging. This work aims to present an experimentally-based method to derive polyenergetic normalized glandular dose coefficients (DgN(p)) from the spectral difference between x-ray spectra incident and transmitted through breast phantoms with glandular/adipose proportions of 30/70 and 50/50 and thicknesses up to 4.5 cm. The spectra were produced by a Mammomat 3000 Nova system using radiographic techniques commonly applied for imaging compressed breast thickness lower than 6 cm (Mo/Mo, Mo/Rh and W/Rh spectra at 26 and 28 kVp). DgN(p) coefficients were compared with values estimated using Boones' method and data from breast images (DICOM Organ Dose and VolparaDose calculations). The DgN(p) were also evaluated in layers into the phantoms (depth-DgN(p)) using both x-ray spectra and thermoluminescent dosimeters (TLD-100). Maximum differences between DgN(p) from the method presented in this study and results using Boone's method was 11%, with larger differences for Mo/Rh spectra in relation to the Mo/Mo. The DgN(p) maximum differences to the coefficients obtained using patient images were 8.0%, for the DgN calculated using Volpara and 6.4% for the DgN from DICOM Organ Dose, for a 4.5 cm breast phantom with 30% glandularity. The DgN(p) estimated from the depth-DgN(p) distributions differ up to 5.2% to the coefficients obtained using the pair incident-transmitted spectra to calculate the DgN(p) directly in the whole phantom. The depth-DgN(p) distributions estimated with TLDs were consistent with the results observed using the experimental spectra, with maximum difference of 3.9%. In conclusion, polyenergetic x-ray spectrometry proved to be an applicable tool for research in dosimetry in mammography allowing spectral characterization. This approach can also be useful for investigation of the influence of x-ray spectra on glandular dose.
Palavras-chave
mammography, normalized glandular dose coefficients, x-ray spectrometry, dosimetry
Referências
  1. ACR, 1999, MAMM QUAL CONTR MAN
  2. Aznar MC, 2005, BRIT J RADIOL, V78, P328, DOI 10.1259/bjr/22554286
  3. Bastos FC, 2011, RADIAT MEAS, V46, P2094, DOI 10.1016/j.radmeas.2011.06.032
  4. Berger M J, 2017, ESTAR STOPPING POWER
  5. Berger M. J., 2010, XCOM PHOTON CROSS SE
  6. Boone J M, 1999, RADIOLOGY, V213
  7. Boone JM, 2002, MED PHYS, V29, P869, DOI 10.1118/1.1472499
  8. Boone JM, 2017, RADIOL PHYS TECHNOL, V10, P129, DOI [10.1007/s12194-017-0404-7, 10.1007/s12194-017-0404]
  9. Bushberg JT, 2011, ESSENTIAL PHYS MED I
  10. CARLSSON GA, 1992, RADIAT PROT DOSIM, V43, P197
  11. Cunha DM, 2010, PHYS MED BIOL, V55, P4335, DOI 10.1088/0031-9155/55/15/010
  12. Dance DR, 2009, PHYS MED BIOL, V54, P4361, DOI 10.1088/0031-9155/54/14/002
  13. Dance DR, 2016, PHYS MED BIOL, V61, pR271, DOI 10.1088/0031-9155/61/19/R271
  14. Dance DR, 1999, APPL RADIAT ISOTOPES, V50, P185, DOI 10.1016/S0969-8043(98)00047-5
  15. Dance DR, 2000, PHYS MED BIOL, V45, P3225, DOI 10.1088/0031-9155/45/11/308
  16. DANCE DR, 1990, PHYS MED BIOL, V35, P1211, DOI 10.1088/0031-9155/35/9/002
  17. DICASTRO E, 1984, PHYS MED BIOL, V29, P1117, DOI 10.1088/0031-9155/29/9/008
  18. European Commission (EC), 2013, EUROPEAN GUIDELINES
  19. Fedon C, 2018, MED PHYS, V45, P1724, DOI 10.1002/mp.12792
  20. Gennaro G, 2018, PHYS MEDICA, V48, P55, DOI 10.1016/j.ejmp.2018.03.016
  21. HAMMERSTEIN GR, 1979, RADIOLOGY, V130, P485
  22. Hendrick RE, 2010, RADIOLOGY, V257, P246, DOI 10.1148/radiol.10100570
  23. Hernandez AM, 2017, MED PHYS, V44, P2148, DOI 10.1002/mp.12222
  24. Hernandez AM, 2015, MED PHYS, V42, P6337, DOI 10.1118/1.4931966
  25. Highnam R, 2017, VOLPARADOSE WHITE PA
  26. Hubbell J.H., 2004, TABLES XRAY MASS ATT
  27. IAEA, 2007, IAEA TECHN REP SER, V457
  28. IAEA, 2011, QUAL ASS PROGR DIG M
  29. KARLSSON M, 1976, ACTA RADIOL THER PHY, V15, P252, DOI 10.3109/02841867609131962
  30. Marmot MG, 2012, LANCET, V380, P1778, DOI 10.1016/S0140-6736(12)61611-0
  31. Massera RT, 2018, PHYS MEDICA, V51, P38, DOI 10.1016/j.ejmp.2018.04.009
  32. Munoz ID, 2018, MED PHYS, V45, P4287, DOI 10.1002/mp.13084
  33. Njor S, 2012, J MED SCREEN, V19, P33, DOI 10.1258/jms.2012.012080
  34. Nosratieh A, 2015, PHYS MED BIOL, V60, P7179, DOI 10.1088/0031-9155/60/18/7179
  35. Pauwels EKJ, 2016, MED PRIN PRACT, V25, P101, DOI 10.1159/000442442
  36. Poletti ME, 2002, PHYS MED BIOL, V47, P47, DOI 10.1088/0031-9155/47/1/304
  37. Santos JC, 2016, J RADIOL PROT, V36, P117, DOI 10.1088/0952-4746/36/1/117
  38. Santos JC, 2017, MED PHYS, V44, P3504, DOI 10.1002/mp.12287
  39. Sarno A, 2017, MED PHYS, V44, P3848, DOI 10.1002/mp.12339
  40. Sarno A, 2017, PHYS MED BIOL, V62, P306, DOI 10.1088/1361-6560/62/1/306
  41. Sechopoulos I, 2012, MED PHYS, V39, P5050, DOI 10.1118/1.4737025
  42. Sobol WT, 1997, MED PHYS, V24, P547, DOI 10.1118/1.597937
  43. Suleiman ME, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.1.013502
  44. Tomal A, 2013, IEEE T NUCL SCI, V60, P728, DOI 10.1109/TNS.2012.2224884
  45. Tomal A, 2016, 21 C BRAS FIS MED FL
  46. Tromans C, 2014, EUR C RAD
  47. Wilkinson L E, 2000, RADIOLOGY, V213, P23
  48. Wilkinson LE, 2001, PHYS MED BIOL, V46, P1575, DOI 10.1088/0031-9155/46/5/316
  49. WU XZ, 1994, RADIOLOGY, V193, P83, DOI 10.1148/radiology.193.1.8090926
  50. Yaffe MJ, 2009, MED PHYS, V36, P5437, DOI 10.1118/1.3250863
  51. 2011, RADIAT MEAS, V46, P2086, DOI 10.1016/J.RADMEAS.2011.06.019