Monoaminergic regulation of nociceptive circuitry in a Parkinson's disease rat model

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS INC ELSEVIER SCIENCE
Autores
CAMPOS, Ana Carolina Pinheiro
BERZUINO, Miria Benatti
HERNANDES, Marina Sorrentino
PAGANO, Rosana Lima
Citação
EXPERIMENTAL NEUROLOGY, v.318, p.12-21, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Pain is a common nonmotor symptom of Parkinson's disease (PD) that remains neglected and misunderstood. Elucidating the nondopaminergic circuitry may be key to better understanding PD and improving current treatments. We investigated the role of monoamines in nociceptive behavior and descending analgesic circuitry in a rat 6-hydroxydopamine (6-OHDA)-induced PD model and explored the resulting motor dysfunctions and inflammatory responses. Rats pretreated with noradrenaline and serotonin reuptake inhibitors were given unilateral striatal 6-OHDA injections and evaluated for mechanical hyperalgesia and motor impairments. Through immunohistochemistry, the number and activation of neurons, and the staining for astrocytes, microglia and enkephalin were evaluated in specific brain structures and the dorsal horn of the spinal cord. The PD model induced bilateral mechanical hyperalgesia that was prevented by reuptake inhibitors in the paw contralateral to the lesion. Reuptake inhibitors also prevented postural immobility and asymmetric rotational behavior in PD rats without interfering with dopaminergic neuron loss or glial activation in the substantia nigra. However, the inhibitors changed the periaqueductal gray circuitry, protected against neuronal impairment in the locus coeruleus and nucleus raphe magnus, and normalized spinal enkephalin and glial staining in lesioned rats. These data indicate that the preservation of noradrenergic and serotonergic systems regulates motor responses and nociceptive circuitry during PD not by interfering directly with nigral lesions but by modulating the opioid system and glial response in the spinal cord. Taken together, these results suggest that nondopaminergic circuitry is essential to the motor and nonmotor symptoms of PD and must be further investigated.
Palavras-chave
Descending analgesia, Noradrenaline, Pain, Parkinson's disease, Serotonin
Referências
  1. AGID Y, 1991, LANCET, V337, P1321, DOI 10.1016/0140-6736(91)92989-F
  2. Almeida TF, 2004, BRAIN RES, V1000, P40, DOI 10.1016/j.brainres.2003.10.073
  3. Barone P, 2009, MOVEMENT DISORD, V24, P1641, DOI 10.1002/mds.22643
  4. BASBAUM AI, 1984, ANNU REV NEUROSCI, V7, P309, DOI 10.1146/annurev.ne.07.030184.001521
  5. BASBAUM AI, 1982, ADV PAIN RES THER, V5, P323
  6. BASBAUM AI, 1991, NEW ENGL J MED, V325, P1168, DOI 10.1056/NEJM199110173251610
  7. Beaudry H, 2011, J NEUROSCI, V31, P13068, DOI 10.1523/JNEUROSCI.1817-11.2011
  8. BENNETT GJ, 1982, BRAIN RES, V240, P162, DOI 10.1016/0006-8993(82)90656-4
  9. Bertrand E, 1997, FOLIA NEUROPATHOL, V35, P80
  10. Blandini Fabio, 2008, Parkinsonism Relat Disord, V14 Suppl 2, pS124, DOI 10.1016/j.parkreldis.2008.04.015
  11. Braak H, 2003, NEUROBIOL AGING, V24, P197, DOI 10.1016/S0197-4580(02)00065-9
  12. BROADHURST P L, 1960, Fortschr Psychosom Med, V1, P63
  13. Broen MPG, 2012, MOVEMENT DISORD, V27, P480, DOI 10.1002/mds.24054
  14. Broetz D, 2007, MOVEMENT DISORD, V22, P853, DOI 10.1002/mds.21439
  15. Budai D, 1998, J NEUROPHYSIOL, V79, P677
  16. Cao H, 2008, NEUROSCI BIOBEHAV R, V32, P972, DOI 10.1016/j.neubiorev.2008.03.009
  17. Cao LF, 2016, NEURAL PLAST, DOI 10.1155/2016/6383240
  18. Carvalho MM, 2013, MOL NEURODEGENER, V8, DOI 10.1186/1750-1326-8-14
  19. Charles KA, 2018, MOVEMENT DISORD, V33, P1010, DOI 10.1002/mds.27377
  20. Chaudhuri KR, 2009, LANCET NEUROL, V8, P464, DOI 10.1016/S1474-4422(09)70068-7
  21. Chaudhuri KR, 2006, LANCET NEUROL, V5, P235, DOI 10.1016/S1474-4422(06)70373-8
  22. CHUDLER EH, 1995, PAIN, V60, P3, DOI 10.1016/0304-3959(94)00172-B
  23. Chudler EH, 2008, BRAIN RES, V1213, P41, DOI 10.1016/j.brainres.2008.03.053
  24. COMMISSIONG JW, 1979, NEUROPHARMACOLOGY, V18, P565, DOI 10.1016/0028-3908(79)90102-3
  25. CUMMINGS JL, 1992, AM J PSYCHIAT, V149, P443
  26. de la Fuente-Fernandez R, 2004, BRAIN, V127, P888, DOI 10.1093/brain/awh102
  27. Defazio G, 2008, ARCH NEUROL-CHICAGO, V65, P1191, DOI 10.1001/archneurol.2008.2
  28. Dimov LF, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153506
  29. Domenici RA, 2019, EXP NEUROL, V315, P72, DOI 10.1016/j.expneurol.2019.02.007
  30. Feinstein DL, 2002, NEUROCHEM INT, V41, P357, DOI 10.1016/S0197-0186(02)00049-9
  31. FIELDS HL, 1991, ANNU REV NEUROSCI, V14, P219, DOI 10.1146/annurev.neuro.14.1.219
  32. Flores JA, 2004, PAIN, V110, P205, DOI 10.1016/j.pain.2004.03.036
  33. Fornai F, 2007, CURR MED CHEM, V14, P2330, DOI 10.2174/092986707781745550
  34. Frosini D, 2015, J NEURAL TRANSM, V122, P1143, DOI 10.1007/s00702-015-1370-z
  35. Gee LE, 2016, EXP NEUROL, V283, P298, DOI 10.1016/j.expneurol.2016.06.031
  36. Gillman PK, 2007, BRIT J PHARMACOL, V151, P737, DOI 10.1038/sj.bjp.0707253
  37. Goetz C G, 1986, Mov Disord, V1, P45, DOI 10.1002/mds.870010106
  38. GOGAS KR, 1991, NEUROSCIENCE, V42, P617, DOI 10.1016/0306-4522(91)90031-I
  39. Gyoneva S, 2013, J BIOL CHEM, V288, P15291, DOI 10.1074/jbc.M113.458901
  40. HERDEGEN T, 1991, J COMP NEUROL, V313, P178, DOI 10.1002/cne.903130113
  41. Herdegen T, 1998, BRAIN RES REV, V28, P370, DOI 10.1016/S0165-0173(98)00018-6
  42. Hopwood SE, 2001, NEUROPHARMACOLOGY, V41, P433, DOI 10.1016/S0028-3908(01)00087-9
  43. Huot P, 2011, PROG NEUROBIOL, V95, P163, DOI 10.1016/j.pneurobio.2011.08.004
  44. Inoue Kazuhide, 2004, Novartis Found Symp, V261, P55
  45. Jessel T, 1991, PRINCIPLES NEURAL SC, P385
  46. Kish SJ, 2003, ADV NEUROL, V91, P39
  47. Krabbe G, 2012, BRAIN BEHAV IMMUN, V26, P419, DOI 10.1016/j.bbi.2011.12.002
  48. Lane E, 2008, PSYCHOPHARMACOLOGY, V199, P303, DOI 10.1007/s00213-007-0931-8
  49. Latremoliere A, 2009, J PAIN, V10, P895, DOI 10.1016/j.jpain.2009.06.012
  50. Loane C, 2012, BRAIN RES, V1461, P111, DOI 10.1016/j.brainres.2012.04.032
  51. LUTHMAN J, 1989, BEHAV BRAIN RES, V33, P267, DOI 10.1016/S0166-4328(89)80121-4
  52. Magnusson JE, 2000, BRAIN RES, V855, P260, DOI 10.1016/S0006-8993(99)02396-3
  53. Mahmoudi J, 2011, DARU, V19, P338
  54. Malcangio M, 1996, TRENDS PHARMACOL SCI, V17, P457
  55. Mantovani M, 2009, BRIT J PHARMACOL, V158, P1848, DOI 10.1111/j.1476-5381.2009.00478.x
  56. Matsubara K, 2006, BRAIN RES, V1112, P126, DOI 10.1016/j.brainres.2006.07.003
  57. McGeer PL, 2008, MOVEMENT DISORD, V23, P474, DOI 10.1002/mds.21751
  58. Milligan ED, 2003, J NEUROSCI, V23, P1026
  59. Miyazaki I, 2016, CURR MED CHEM, V23, P686, DOI 10.2174/0929867323666160122115057
  60. Miyazaki I, 2013, NEUROBIOL DIS, V59, P244, DOI 10.1016/j.nbd.2013.08.003
  61. MOLANDER C, 1984, J COMP NEUROL, V230, P133, DOI 10.1002/cne.902300112
  62. Molochnikov L, 2014, FRONT SYST NEUROSCI, V8, DOI 10.3389/fnsys.2014.00110
  63. Mylius V, 2009, J NEUROL NEUROSUR PS, V80, P24, DOI 10.1136/jnnp.2008.145995
  64. Nayebi AM, 2010, PHARMACOL REP, V62, P258, DOI 10.1016/S1734-1140(10)70264-4
  65. Nishijima H, 2016, NEUROL CLIN NEUROSCI, V4, P129, DOI 10.1111/ncn3.12051
  66. Obeso JA, 2004, TRENDS NEUROSCI, V27, P125, DOI 10.1016/j.tins.2003.12.006
  67. Park J, 2015, MOL PAIN, V11, DOI 10.1186/s12990-015-0026-1
  68. Paxinos G, 2005, RAT BRAIN STEREOTAXI
  69. Pocock JM, 2007, TRENDS NEUROSCI, V30, P527, DOI 10.1016/j.tins.2007.07.007
  70. Prinssen EPM, 1999, PSYCHOPHARMACOLOGY, V144, P20, DOI 10.1007/s002130050972
  71. Prinz A, 2013, EXP NEUROL, V248, P236, DOI 10.1016/j.expneurol.2013.06.015
  72. Quittenbam BH, 2004, PARKINSONISM RELAT D, V10, P129, DOI 10.1016/j.parkreldis.2003.12.001
  73. RANDALL LO, 1957, ARCH INT PHARMACOD T, V111, P409
  74. READER TA, 1984, J NEURAL TRANSM, V59, P207, DOI 10.1007/BF01250009
  75. Rodrigues RWP, 2001, INT J NEUROSCI, V109, P91, DOI 10.3109/00207450108986528
  76. RUDA MA, 1982, SCIENCE, V215, P1523, DOI 10.1126/science.6121374
  77. RUDA MA, 1986, PROG BRAIN RES, V66, P219, DOI 10.1016/S0079-6123(08)64606-3
  78. SANBERG PR, 1980, NATURE, V284, P472, DOI 10.1038/284472a0
  79. Sandkuhler J, 1996, PROG BRAIN RES, V110, P207
  80. Santiago RM, 2014, BEHAV BRAIN RES, V259, P70, DOI 10.1016/j.bbr.2013.10.035
  81. SCATTON B, 1986, BRAIN RES, V380, P181, DOI 10.1016/0006-8993(86)91446-0
  82. SCATTON B, 1983, BRAIN RES, V275, P321, DOI 10.1016/0006-8993(83)90993-9
  83. Schallert T, 2000, NEUROPHARMACOLOGY, V39, P777, DOI 10.1016/S0028-3908(00)00005-8
  84. Shulman LM, 2001, MOVEMENT DISORD, V16, P507, DOI 10.1002/mds.1099
  85. Skogar O, 2016, J MULTIDISCIP HEALTH, V9, P469, DOI 10.2147/JMDH.S105857
  86. Tieu K, 2011, CSH PERSPECT MED, V1, DOI 10.1101/cshperspect.a009316
  87. Tobaldini G, 2019, MOL NEUROBIOL, V56, P1000, DOI 10.1007/s12035-018-1116-7
  88. Tong J, 2006, ARCH NEUROL-CHICAGO, V63, P1724, DOI 10.1001/archneur.63.12.1724
  89. UNGERSTEDT U, 1968, EUR J PHARMACOL, V5, P107, DOI 10.1016/0014-2999(68)90164-7
  90. Wang CT, 2017, MOL PAIN, V13, DOI 10.1177/1744806917691525
  91. Wang T, 2009, NEUROSCI BULL, V25, P15, DOI 10.1007/s12264-009-1023-z
  92. Watkins LR, 2003, ADV EXP MED BIOL, V521, P1
  93. Woolf CJ, 2011, PAIN, V152, pS2, DOI 10.1016/j.pain.2010.09.030
  94. Xu YQ, 2012, PROG NEUROBIOL, V97, P1, DOI 10.1016/j.pneurobio.2012.02.002
  95. Zhang N, 2015, NEUROL SCI, V36, P577, DOI 10.1007/s10072-014-1993-0
  96. Zhang X, 2008, P NATL ACAD SCI USA, V105, P2163, DOI 10.1073/pnas.0711839105
  97. ZIMMERMANN M, 1983, PAIN, V16, P109, DOI 10.1016/0304-3959(83)90201-4