Skeletal Muscle Response to Deflazacort, Dexamethasone and Methylprednisolone

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2019
Editora
MDPI
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
CELLS, v.8, n.5, article ID 406, 20p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Glucocorticoids represent some of the most prescribed drugs that are widely used in the treatment of neuromuscular diseases, but their usage leads to side effects such as muscle atrophy. However, different synthetic glucocorticoids can lead to different muscle effects, depending upon its chemical formulation. Here, we intended to demonstrate the muscle histologic and molecular effects of administering different glucocorticoids in equivalency and different dosages. Methods: Seventy male Wistar rats distributed into seven groups received different glucocorticoids in equivalency for ten days or saline solution. The study groups were: Control group (CT) saline solution; dexamethasone (DX) 1.25 or 2.5 mg/kg/day; methylprednisolone (MP) 6.7 or 13.3mg/kg/day; and deflazacort (DC) 10 or 20 mg/kg/day. At the end of the study, the animals were euthanized, and the tibialis anterior and gastrocnemius muscles were collected for metachromatic ATPase (Cross-sectional area (CSA) measurement), Western blotting (protein expression of IGF-1 and Ras/Raf/MEK/ERK pathways) and RT-PCR (MYOSTATIN, MuRF-1, Atrogin-1, REDD-1, REDD-2, MYOD, MYOG and IRS1/2 genes expression) experiments. Results: Muscle atrophy occurred preferentially in type 2B fibers in all glucocorticoid treated groups. DC on 10 mg/kg/day was less harmful to type 2B fibers CSA than other doses and types of synthetic glucocorticoids. In type 1 fibers CSA, lower doses of DC and DX were more harmful than high doses. DX had a greater effect on the IGF-1 pathway than other glucocorticoids. MP more significantly affected P-ERK1/2 expression, muscle fiber switching (fast-to-slow), and expression of REDD1 and MyoD genes than other glucocorticoids. Compared to DX and MP, DC had less of an effect on the expression of atrogenes (MURF-1 and Atrogin-1) despite increased MYOSTATIN and decreased IRS-2 genes expression. Conclusions: Different glucocorticoids appears to cause muscle atrophy affecting secondarily different signaling mechanisms. MP is more likely to affect body/muscles mass, MEK/ERK pathway and fiber type transition, DX the IGF-1 pathway and IRS1/2 expression. DC had the smallest effect on muscle atrophic response possibly due a delayed timing on atrogenes response.
Palavras-chave
glucocorticoid, skeletal muscle, muscle atrophy, IGF-1, MEK, ERK, Myostatin
Referências
  1. Agell N, 2002, CELL SIGNAL, V14, P649, DOI 10.1016/S0898-6568(02)00007-4
  2. Amon A, 2005, N-S ARCH PHARMACOL, V371, pR72
  3. ANDERSON J, 2007, MUSCLE NERVE, V19, P1576, DOI 10.1002/(SICI)1097-4598(199612)19:12
  4. ANGELINI C, 1994, MUSCLE NERVE, V17, P386, DOI 10.1002/mus.880170405
  5. Angelini C, 2007, MUSCLE NERVE, V36, P424, DOI 10.1002/mus.20812
  6. Barnes PJ, 2014, CHEM IMMUNOL ALLERGY, V100, P311, DOI 10.1159/000359984
  7. Bello L, 2015, NEUROLOGY, V85, P1048, DOI 10.1212/WNL.0000000000001950
  8. Bentzinger CF, 2008, CELL METAB, V8, P411, DOI 10.1016/j.cmet.2008.10.002
  9. Birnkrant DJ, 2018, LANCET NEUROL, V17, P251, DOI 10.1016/S1474-4422(18)30024-3
  10. Bodine SC, 2001, NAT CELL BIOL, V3, P1014, DOI 10.1038/ncb1101-1014
  11. Bodine SC, 2001, SCIENCE, V294, P1704, DOI 10.1126/science.1065874
  12. Braun TP, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00012
  13. Britto FA, 2014, AM J PHYSIOL-ENDOC M, V307, pE983, DOI 10.1152/ajpendo.00234.2014
  14. Brugarolas J, 2004, GENE DEV, V18, P2893, DOI 10.1101/gad.1256804
  15. Chrousos GP, 2004, J CLIN ENDOCR METAB, V89, P563, DOI 10.1210/jc.2003-032026
  16. Ciaraldi TP, 2010, MOL CELL ENDOCRINOL, V315, P153, DOI 10.1016/j.mce.2009.05.020
  17. Davies E, 2003, CLIN EXP PHARMACOL P, V30, P437, DOI 10.1046/j.1440-1681.2003.03867.x
  18. DEKHUIJZEN PNR, 1995, EUR RESPIR J, V8, P824
  19. DUBOIS DC, 1984, AM J PHYSIOL, V247, pE118
  20. Ellisen LW, 2002, MOL CELL, V10, P995, DOI 10.1016/S1097-2765(02)00706-2
  21. Ferraris JR, 2000, PEDIATR NEPHROL, V14, P682, DOI 10.1007/s004670000337
  22. Frost RA, 2009, J CELL BIOCHEM, V108, P1192, DOI 10.1002/jcb.22349
  23. GENNARI C, 1985, CALCIFIED TISSUE INT, V37, P592, DOI 10.1007/BF02554912
  24. GENNARI C, 1984, CALCIFIED TISSUE INT, V36, P245, DOI 10.1007/BF02405325
  25. Gonzalez-Perez O, 2007, ADV THER, V24, P1052, DOI 10.1007/BF02877711
  26. Gordon BS, 2013, INT J BIOCHEM CELL B, V45, P2147, DOI 10.1016/j.biocel.2013.05.039
  27. Gundersen K, 2011, BIOL REV, V86, P564, DOI 10.1111/j.1469-185X.2010.00161.x
  28. Gupta Anu, 2013, Indian J Endocrinol Metab, V17, P913, DOI 10.4103/2230-8210.117215
  29. Hasselgren PO, 2010, CURR OPIN CLIN NUTR, V13, P423, DOI 10.1097/MCO.0b013e32833a5107
  30. Higginson J, 2002, PFLUG ARCH EUR J PHY, V445, P437, DOI 10.1007/s00424-002-0939-1
  31. Houde S, 2008, PEDIATR NEUROL, V38, P200, DOI 10.1016/j.pediatrneurol.2007.11.001
  32. Jefferson LS, 1999, INT J BIOCHEM CELL B, V31, P191, DOI 10.1016/S1357-2725(98)00141-1
  33. Karatsoreos IN, 2010, ENDOCRINOLOGY, V151, P2117, DOI 10.1210/en.2009-1436
  34. KASPERK C, 1995, CALCIFIED TISSUE INT, V57, P120, DOI 10.1007/BF00298432
  35. Katiyar S, 2009, EMBO REP, V10, P866, DOI 10.1038/embor.2009.93
  36. Kelleher AR, 2015, AM J PHYSIOL-ENDOC M, V308, pE122, DOI 10.1152/ajpendo.00341.2014
  37. KELLY FJ, 1986, MUSCLE NERVE, V9, P1, DOI 10.1002/mus.880090102
  38. KELLY FJ, 1982, BIOCHEM J, V208, P147, DOI 10.1042/bj2080147
  39. Kuo TY, 2012, P NATL ACAD SCI USA, V109, P11160, DOI 10.1073/pnas.1111334109
  40. Leger B, 2006, J PHYSIOL-LONDON, V576, P923, DOI 10.1113/jphysiol.2006.116715
  41. Lin L, 2005, BIOCHEM J, V392, P93, DOI 10.1042/BJ20050553
  42. Ma K, 2003, AM J PHYSIOL-ENDOC M, V285, pE363, DOI 10.1152/ajpendo.00487.2002
  43. Macedo AG, 2016, STEROIDS, V107, P30, DOI 10.1016/j.steroids.2015.12.016
  44. Maes K, 2010, RESP RES, V11, DOI 10.1186/1465-9921-11-178
  45. Maes K, 2008, AM J RESP CRIT CARE, V178, P1219, DOI 10.1164/rccm.200702-296OC
  46. McClung JM, 2010, AM J PHYSIOL-CELL PH, V298, pC542, DOI 10.1152/ajpcell.00192.2009
  47. MEIKLE AW, 1977, AM J MED, V63, P200, DOI 10.1016/0002-9343(77)90233-9
  48. Metz HE, 2011, CLIN CANCER RES, V17, P206, DOI 10.1158/1078-0432.CCR-10-0434
  49. Moxley RT, 2010, J CHILD NEUROL, V25, P1116, DOI 10.1177/0883073810371004
  50. Nava S, 1996, AM J RESP CRIT CARE, V153, P1888, DOI 10.1164/ajrccm.153.6.8665051
  51. Nayak Surajit, 2008, Indian J Dermatol, V53, P167, DOI 10.4103/0019-5154.44786
  52. Nicolaides NC, 2014, BMC ENDOCR DISORD, V14, DOI 10.1186/1472-6823-14-71
  53. Nishida H, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128805
  54. OGILVIE RW, 1990, STAIN TECHNOL, V65, P231, DOI 10.3109/10520299009105613
  55. PAGANO G, 1989, ARCH INTERN MED, V149, P1093
  56. Passaquin AC, 1998, BRIT J PHARMACOL, V124, P1751, DOI 10.1038/sj.bjp.0702036
  57. Pey P, 2012, VET RADIOL ULTRASOUN, V53, P204, DOI 10.1111/j.1740-8261.2011.01884.x
  58. Reitter B, 1995, BRAIN DEV-JPN, V17, P39, DOI 10.1016/0387-7604(95)00015-1
  59. Sacheck JM, 2007, FASEB J, V21, P140, DOI 10.1096/fj.06-6604com
  60. Sandri M, 2006, P NATL ACAD SCI USA, V103, P16260, DOI 10.1073/pnas.0607795103
  61. Schacke H, 2002, PHARMACOL THERAPEUT, V96, P23, DOI 10.1016/S0163-7258(02)00297-8
  62. Schakman O, 2008, J ENDOCRINOL, V197, P1, DOI 10.1677/JOE-07-0606
  63. Schakman O, 2013, INT J BIOCHEM CELL B, V45, P2163, DOI 10.1016/j.biocel.2013.05.036
  64. Schakman O, 2009, HORM RES, V72, P36, DOI 10.1159/000229762
  65. Schiaffino S, 2013, FEBS J, V280, P4294, DOI 10.1111/febs.12253
  66. Seaberg B, 2015, MOL CELL BIOL, V35, P1238, DOI 10.1128/MCB.01071-14
  67. Shi H, 2008, FASEB J, V22, P2990, DOI 10.1096/fj.07-097600
  68. Shieh PB, 2018, MUSCLE NERVE, V58, P639, DOI 10.1002/mus.26191
  69. Shimizu N, 2011, CELL METAB, V13, P170, DOI 10.1016/j.cmet.2011.01.001
  70. Taves MD, 2011, AM J PHYSIOL-ENDOC M, V301, pE11, DOI 10.1152/ajpendo.00100.2011
  71. Tsuchida W, 2017, J CELL PHYSIOL, V232, P650, DOI 10.1002/jcp.25609
  72. Wang HM, 2006, J BIOL CHEM, V281, P39128, DOI 10.1074/jbc.M610023200
  73. Wang RX, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156225
  74. Waters SB, 1996, TRENDS CELL BIOL, V6, P1, DOI 10.1016/0962-8924(96)81024-5
  75. Yoshimura M, 2007, NEUROMUSCULAR DISORD, V17, P775, DOI 10.1016/j.nmd.2007.06.053