AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders

Carregando...
Imagem de Miniatura
Citações na Scopus
131
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
SALPIETRO, Vincenzo
DIXON, Christine L.
GUO, Hui
BELLO, Oscar D.
VANDROVCOVA, Jana
EFTHYMIOU, Stephanie
MAROOFIAN, Reza
HEIMER, Gali
BURGLEN, Lydie
VALENCE, Stephanie
Citação
NATURE COMMUNICATIONS, v.10, article ID 3094, 16p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.
Palavras-chave
Referências
  1. Achuta VS, 2018, SCI SIGNAL, V11, DOI 10.1126/scisignal.aan8784
  2. Asrar S, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004339
  3. Barbon A, 2011, BIOCHEMISTRY-MOSCOW+, V76, P882, DOI 10.1134/S0006297911080037
  4. Brechet A, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15910
  5. BRUSA R, 1995, SCIENCE, V270, P1677, DOI 10.1126/science.270.5242.1677
  6. Bussi G, 2007, J CHEM PHYS, V126, DOI 10.1063/1.2408420
  7. Carvill GL, 2013, NAT GENET, V45, P1073, DOI 10.1038/ng.2727
  8. Chen SW, 2018, NAT GENET, V50, P1032, DOI 10.1038/s41588-018-0130-z
  9. Coutelier M, 2015, NEUROLOGY, V84, P1751, DOI 10.1212/WNL.0000000000001524
  10. Davies B, 2017, HUM MOL GENET, V26, P3869, DOI 10.1093/hmg/ddx270
  11. Eggington JM, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1324
  12. Emsley P, 2010, ACTA CRYSTALLOGR D, V66, P486, DOI 10.1107/S0907444910007493
  13. Endele S, 2010, NAT GENET, V42, P1021, DOI 10.1038/ng.677
  14. Engel J, 2001, EPILEPSIA, V42, P796, DOI 10.1046/j.1528-1157.2001.10401.x
  15. Firth HV, 2009, AM J HUM GENET, V84, P524, DOI 10.1016/j.ajhg.2009.03.010
  16. Geisheker MR, 2017, NAT NEUROSCI, V20, P1043, DOI 10.1038/nn.4589
  17. Greger IH, 2003, NEURON, V40, P763, DOI 10.1016/S0896-6273(03)00668-8
  18. Guex N, 1997, ELECTROPHORESIS, V18, P2714, DOI 10.1002/elps.1150181505
  19. Hackmann K, 2013, EUR J HUM GENET, V21, P112, DOI 10.1038/ejhg.2012.97
  20. Hagberg Bengt, 2002, Eur J Paediatr Neurol, V6, P293, DOI 10.1053/ejpn.2002.0612
  21. Hamdan FF, 2011, AM J HUM GENET, V88, P306, DOI 10.1016/j.ajhg.2011.02.001
  22. Hess B, 2008, J CHEM THEORY COMPUT, V4, P116, DOI 10.1021/ct700200b
  23. Heyne HO, 2018, NAT GENET, V50, P1048, DOI 10.1038/s41588-018-0143-7
  24. Isaac JTR, 2007, NEURON, V54, P859, DOI 10.1016/j.neuron.2007.06.001
  25. Jia ZP, 1996, NEURON, V17, P945, DOI 10.1016/S0896-6273(00)80225-1
  26. Kury S, 2017, AM J HUM GENET, V101, P768, DOI 10.1016/j.ajhg.2017.10.003
  27. Kwak S, 2005, J MOL MED, V83, P110, DOI 10.1007/s00109-004-0599-z
  28. Lamsa KP, 2007, SCIENCE, V315, P1262, DOI 10.1126/science.1137450
  29. Lee SC, 2010, MOL NEURODEGENER, V5, DOI 10.1186/1750-1326-5-54
  30. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  31. Lemke JR, 2013, NAT GENET, V45, P1067, DOI 10.1038/ng.2728
  32. Li RH, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006129
  33. Lindorff-Larsen K, 2010, PROTEINS, V78, P1950, DOI 10.1002/prot.22711
  34. Liu SJ, 2012, J PHYSIOL-LONDON, V590, P13, DOI 10.1113/jphysiol.2011.213926
  35. Lombardi LM, 2015, J CLIN INVEST, V125, P2914, DOI 10.1172/JCI78167
  36. Martin S, 2017, AM J HUM GENET, V101, P1013, DOI 10.1016/j.ajhg.2017.11.004
  37. Mcrae JF, 2017, NATURE, V542, P433, DOI 10.1038/nature21062
  38. Meyerson JR, 2014, NATURE, V514, P328, DOI 10.1038/nature13603
  39. Morimura N, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15800
  40. Neul JL, 2010, ANN NEUROL, V68, P944, DOI 10.1002/ana.22124
  41. Pronk S, 2013, BIOINFORMATICS, V29, P845, DOI 10.1093/bioinformatics/btt055
  42. Sadybekov A, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00472-0
  43. Salazar H, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14327
  44. Santen GWE, 2012, NAT GENET, V44, P379, DOI 10.1038/ng.2217
  45. Schalock R., 2010, INTELLECTUAL DISABIL
  46. Scheffer IE, 2017, EPILEPSIA, V58, P512, DOI 10.1111/epi.13709
  47. Sobolevsky AI, 2005, BIOPHYS J, V88, P235, DOI 10.1529/biophysj.104.049411
  48. Sobolevsky AI, 2015, J PHYSIOL-LONDON, V593, P29, DOI 10.1113/jphysiol.2013.264911
  49. Sobolevsky AI, 2009, NATURE, V462, P745, DOI 10.1038/nature08624
  50. Srivastava S, 2018, NEUROGENETICS, V19, P41, DOI 10.1007/s10048-017-0535-3
  51. Sukumaran M, 2011, EMBO J, V30, P972, DOI 10.1038/emboj.2011.17
  52. Tanaka AJ, 2015, AM J HUM GENET, V97, P457, DOI 10.1016/j.ajhg.2015.07.014
  53. Tramarin M, 2018, HUM MOL GENET, V27, P2052, DOI 10.1093/hmg/ddy108
  54. Traynelis SF, 2010, PHARMACOL REV, V62, P405, DOI 10.1124/pr.109.002451
  55. Twomey EC, 2018, NEURON, V99, P956, DOI 10.1016/j.neuron.2018.07.027
  56. Twomey EC, 2017, NATURE, V549, P60, DOI 10.1038/nature23479
  57. Twomey EC, 2016, SCIENCE, V353, P83, DOI 10.1126/science.aaf8411
  58. Van Damme P, 2005, J NEUROPATH EXP NEUR, V64, P605, DOI 10.1097/01.jnen.0000171647.09589.07
  59. Vidal S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11620-3
  60. Vissers LELM, 2016, NAT REV GENET, V17, P9, DOI 10.1038/nrg3999
  61. Wang J, 2018, NAT COMMUN, V9, P1
  62. Wang TY, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13316
  63. Wu Y, 2007, P NATL ACAD SCI USA, V104, P18163, DOI 10.1073/pnas.0708699104
  64. Yoo Y, 2017, ANN NEUROL, V82, P466, DOI 10.1002/ana.25032
  65. Zuo J, 1997, NATURE, V388, P769, DOI 10.1038/42009