Clinical, ophthalmological, imaging and genetic features in Brazilian patients with ARSACS

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
REZENDE FILHO, Flavio Moura
PARKINSON, Michael H.
POH, Roy
FABER, Ingrid
LOURENCO, Charles Marques
MARQUES JUNIOR, Wilson
FRANCA JUNIOR, Marcondes Cavalcante
SALLUM, Juliana M. Ferraz
Citação
PARKINSONISM & RELATED DISORDERS, v.62, p.148-155, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an important form of inherited ataxia with a varied clinical spectrum. Detailed studies of phenotype and genotype are necessary to improve diagnosis and elucidate this disorder pathogenesis. OBJECTIVE AND METHODS: To investigate the clinical phenotype, retinal architecture, neuroimaging features and genetic profile of Brazilian patients with ARSACS, we performed neurological and ophthalmological evaluation in thirteen Brazilian patients with molecularly confirmed ARSACS, and examined their mutation profiles. Optical coherence tomography protocol (OCT) consisted in peripapillary retinal nerve fiber layer (RNFL) measurement and qualitative analysis of perifoveal scans. Neuroimaging protocol accessed the frequency of atrophy in cerebellum, corpus callosum and parietal lobe, brainstem signal abnormalities, and posterior fossa arachnoid cysts. We reviewed the literature to delineate the ARSACS phenotype in the largest series worldwide. RESULTS: All patients had ataxia and spasticity, and 11/13 had peripheral neuropathy. Macular microcysts were present in two patients. Peripapillary striations, dentate appearance of inner retina and papillomacular fold were found in eleven cases. All individuals exhibited thickening of RNFL in OCT. The most frequent radiological signs were cerebellar atrophy (13/13), biparietal atrophy (12/13), and linear pontine hypointensities (13/13). Genetic analysis revealed 14 different SACS variants, of which two are novel. CONCLUSION: Macular microcysts, inner retina dentate appearance and papillomacular fold are novel retinal imaging signs of ARSACS. Ophthalmological and neuroimaging changes are common findings in Brazilian patients. The core clinical features of ARSACS are ataxia, spasticity and peripheral neuropathy with onset predominantly in the first decade of life.
Palavras-chave
Optical coherence tomography, MRI, Autosomal recessive ataxia of Charlevoix-Saguenay, Retina, Ataxia
Referências
  1. Abegg M, 2014, OPHTHALMOLOGY, V121, P142, DOI 10.1016/j.ophtha.2013.08.045
  2. Baets J, 2010, NEUROLOGY, V75, P1181, DOI 10.1212/WNL.0b013e3181f4d86c
  3. Barboni P, 2005, OPHTHALMOLOGY, V112, P120, DOI 10.1016/j.ophtha.2004.06.034
  4. Bouchard J.P., 1991, HDB CLIN NEUROLOGY, V16, P451
  5. BOUCHARD JP, 1978, CAN J NEUROL SCI, V5, P61, DOI 10.1017/S0317167100024793
  6. Bouchard JP, 1998, NEUROMUSCULAR DISORD, V8, P474, DOI 10.1016/S0960-8966(98)00055-8
  7. BOUCHARD JP, 1979, CAN J NEUROL SCI, V6, P185, DOI 10.1017/S0317167100119614
  8. Burggraaff MC, 2014, INVEST OPHTH VIS SCI, V55, P952, DOI 10.1167/iovs.13-12912
  9. Desserre J, 2011, CEREBELLUM, V10, P758, DOI 10.1007/s12311-011-0286-x
  10. Duquette A, 2013, MOVEMENT DISORD, V28, P2011, DOI 10.1002/mds.25604
  11. Engert JC, 2000, NAT GENET, V24, P120, DOI 10.1038/72769
  12. FRIBERG TR, 1989, GRAEF ARCH CLIN EXP, V227, P459, DOI 10.1007/BF02172899
  13. Gazulla J, 2011, MED HYPOTHESES, V77, P347, DOI 10.1016/j.mehy.2011.05.011
  14. Girard M, 2012, P NATL ACAD SCI USA, V109, P1661, DOI 10.1073/pnas.1113166109
  15. Lariviere R, 2015, HUM MOL GENET, V24, P727, DOI 10.1093/hmg/ddu491
  16. Martin MH, 2007, AM J NEURORADIOL, V28, P1606, DOI 10.3174/ajnr.A0603
  17. NIKOSKELAINEN EK, 1995, J NEUROL NEUROSUR PS, V59, P160, DOI 10.1136/jnnp.59.2.160
  18. Pablo LE, 2011, MOL VIS, V17
  19. Parkinson M.H., 2014, ACNR, V13, P12
  20. Parkinson MH, 2018, BRAIN, V141, P989, DOI 10.1093/brain/awy028
  21. Prodi E, 2013, EUR J NEUROL, V20, P138, DOI 10.1111/j.1468-1331.2012.03815.x
  22. Schule R, 2009, J NEUROL NEUROSUR PS, V80, P1402, DOI 10.1136/jnnp.2008.167528
  23. Sibony PA, 2015, INVEST OPHTH VIS SCI, V56, P5670, DOI 10.1167/iovs.15-17459
  24. Synofzik M, 2013, ORPHANET J RARE DIS, V8, DOI 10.1186/1750-1172-8-41
  25. Takiyama Y, 2007, CEREBELLUM, V6, P353, DOI 10.1080/14734220701230466
  26. Terracciano A, 2009, NEUROGENETICS, V10, P151, DOI 10.1007/s10048-008-0159-8
  27. Vecino E, 2015, INT J DEV BIOL, V59, P63, DOI 10.1387/ijdb.150070ev
  28. Vermeer S, 2008, NEUROGENETICS, V9, P207, DOI 10.1007/s10048-008-0131-7
  29. Vogel AP, 2018, J NEUROL, V265, P2060, DOI 10.1007/s00415-018-8950-4
  30. Yu-Wai-Man P, 2014, BRIT J OPHTHALMOL, V98, P711, DOI 10.1136/bjophthalmol-2013-304534