Including auditory tube function on models is relevant to assess water exposure after tympanostomy tubes-Multiphase computerized fluid dynamics model

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
SUBTIL, Joao
MARTINS, Nuno
NUNES, Teresa
COVAS, Didia
VERA-CRUZ, Paulo
PACO, Joao
Citação
INTERNATIONAL JOURNAL OF PEDIATRIC OTORHINOLARYNGOLOGY, v.111, p.187-191, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Myringotomy with tympanostomy tube is the most common otologic surgery and some patients are still advised to avoid water. However, there is no evidence supporting this, with published papers questioning the need for this advice. Methods: A Multiphase Computational Fluid Dynamics (CFD) model was created using computerized tomography images of a child's healthy ear. It was then used to study the flow of fluids through the external ear, tympanic cavity, and auditory tube, with and without submersion. Results: The model accurately described the behavior of the air retained in the patient's nasopharynx and tympanic cavity. A simulated elevation of pressure in the external auditory canal without submersion, without increase of pressure in the nasopharynx, demonstrated that fluids promptly crossed the tympanostomy tube into the middle ear. However, simulated elevation of pressure in the external auditory canal with concurrent elevation of air pressure in the nasopharynx during submersion did not lead to passive tube opening nor to any detectable flow through the tympanostomy tube. Conclusions: In the model, submersion increases pressure in the nasopharynx which offsets the pressure in the external auditory canal. So, in the absence of a pressure gradient, no passive tuba) opening took place, and no air or fluid flow was detected through the transtympanic tube. This model now includes the exhaust function of the auditory tube in the model and shows its relevance.
Palavras-chave
Myringostomy, Tympanostomy tube insertion, Swimming, Postoperative care
Referências
  1. Bunne M, 2000, ACTA OTO-LARYNGOL, V120, P716
  2. Bunne M, 2000, INT J PEDIATR OTORHI, V52, P131, DOI 10.1016/S0165-5876(00)00281-0
  3. BYLANDER A, 1983, ACTA OTO-LARYNGOL, V95, P55, DOI 10.3109/00016488309130915
  4. COHEN HA, 1994, J FAM PRACTICE, V38, P30
  5. Giannoni C, 2000, ARCH OTOLARYNGOL, V126, P1507
  6. Goldstein NA, 2005, LARYNGOSCOPE, V115, P324, DOI 10.1097/01.mlg.0000154742.33067.fb
  7. Grindler DJ, 2014, OTOLARYNG HEAD NECK, V151, P333, DOI 10.1177/0194599814525576
  8. Hebert RL, 1998, ARCH OTOLARYNGOL, V124, P1118, DOI 10.1001/archotol.124.10.1118
  9. Hellstrom S, 2011, OTOLARYNG HEAD NECK, V145, P383, DOI 10.1177/0194599811409862
  10. Longest PW, 2016, J AEROSOL MED PULM D, V29, P461, DOI 10.1089/jamp.2015.1281
  11. Lous J, 2005, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001801.pub2
  12. Ma BS, 2009, J AEROSOL SCI, V40, P403, DOI 10.1016/j.jaerosci.2009.01.002
  13. McDonald S, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004741.pub2
  14. Moualed D., 2016, COCHRANE DB SYST REV, V1
  15. Mylavarapu G, 2009, J BIOMECH, V42, P1553, DOI 10.1016/j.jbiomech.2009.03.035
  16. PARKER GS, 1994, AM J OTOLARYNG, V15, P193, DOI 10.1016/0196-0709(94)90004-3
  17. PASHLEY NRT, 1984, J OTOLARYNGOL, V13, P296
  18. Poss JM, 2008, ARCH OTOLARYNGOL, V134, P133, DOI 10.1001/archoto.2007.25
  19. Rosenfeld RM, 2016, OTOLARYNG HEAD NECK, V154, pS1, DOI 10.1177/0194599815623467
  20. Rosenfeld RM, 2013, OTOLARYNG HEAD NECK, V149, pS1, DOI 10.1177/0194599813487302
  21. Rosenfeld RM, 2000, ARCH OTOLARYNGOL, V126, P585, DOI 10.1001/archotol.126.5.585
  22. Saffer Moacyr, 2002, J. Pediatr. (Rio J.), V78, P475, DOI 10.1590/S0021-75572002000600006
  23. Salata JA, 1996, ARCH OTOLARYNGOL, V122, P276
  24. SHARMA PD, 1986, SCAND AUDIOL, P89
  25. Smith LP, 2005, LARYNGOSCOPE, V115, P1367, DOI 10.1097/01.MLG.0000166704.99091.A8
  26. Steele DW, 2017, PEDIATRICS, V139
  27. Subtil J., 2017, BRAZ J OTORHINOLARYN
  28. Tian G, 2015, PHARM RES-DORDR, V32, P3170, DOI 10.1007/s11095-015-1695-1
  29. van Dongen TMA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069062
  30. van Ertbruggen C, 2008, J BIOMECH, V41, P399, DOI 10.1016/j.jbiomech.2007.08.013
  31. Wang M. C., 2009, J CHIN MED ASS, V72
  32. Wilcox LJ, 2014, LARYNGOSCOPE, V124, P10, DOI 10.1002/lary.23993
  33. Yunus C., 2013, FLUID MECH FUNDAMENT