Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid base regulation of skeletal muscle

Carregando...
Imagem de Miniatura
Citações na Scopus
30
Tipo de produção
article
Data de publicação
2019
Editora
ELSEVIER SCIENCE INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
DOLAN, Eimear
HARRIS, Roger Charles
BICUDO, Jose Eduardo Pereira Wilken
BISHOP, David John
SALE, Craig
GUALANO, Bruno
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, v.234, p.77-86, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Histidine containing dipeptides (HCDs: carnosine, anserine and balenine) have numerous therapeutic and ergogenic properties, but there is a lack of consensus on the mechanistic pathways through which they function. Potential roles include intracellular buffering, neutralisation of reactive species, and calcium regulation. Comparative investigations of the HCD content of various species provide unique insight into their most likely mechanisms of action. This review chronologically describes how the comparative physiology studies, conducted since the beginning of the 20th century, have shaped our understanding of the physiological roles of HCDs. The investigation of a wide range of physiologically distinct species indicates that those species with a strong reliance on non-oxidative forms of energy production are abundant in HCDs. These include: whales who experience long periods of hypoxia while diving; racehorses and greyhound dogs who have highly developed sprint abilities, and chickens and turkeys whose limited capacity for flight is largely fuelled by their white, glycolytic, muscle. Additionally, a higher HCD content in the Type 2 muscle fibres of various species (which have greater capacity for non-oxidative metabolism) was consistently observed. The pKa of the HCDs render them ideally suited to act as intracellular physicochemical buffers within the pH transit range of the skeletal muscle. As such, their abundance in species which show a greater reliance on non-oxidative forms of energy metabolism, and which experience regular challenges to acid-base homeostasis, provides strong evidence that intracellular proton buffering is an important function of the HCDs in skeletal muscle.
Palavras-chave
Acidosis, Anserine, Antioxidant, Buffering, Biochemistry, Calcium, Carnosine, Comparative physiology, Exercise, Fatigue, pH, Mechanism
Referências
  1. ABE H, 1985, AM J PHYSIOL, V249, pR449
  2. Abe H, 2000, BIOCHEMISTRY-MOSCOW+, V65, P757
  3. Aldini G, 2005, BIOFACTORS, V24, P77, DOI 10.1002/biof.5520240109
  4. Artioli G, 2018, EUROPEAN J SPORT SCI, P1, DOI 10.1080/17461391.2018
  5. Baguet A, 2012, AMINO ACIDS, V43, P13, DOI 10.1007/s00726-011-1197-3
  6. Batrukova MA, 1997, BBA-BIOMEMBRANES, V1324, P142, DOI 10.1016/S0005-2736(96)00216-7
  7. Bergstrom J, 1962, SCAND J CLIN LAB INV, V14
  8. Boldyrev A, 2004, COMP BIOCHEM PHYS B, V137, P81, DOI 10.1016/j.cbpc.2003.10.008
  9. Boldyrev AA, 2010, REJUV RES, V13, P156, DOI 10.1089/rej.2009.0923
  10. Boldyrev AA, 2013, PHYSIOL REV, V93, P1803, DOI 10.1152/physrev.00039.2012
  11. Carini M, 2003, J MASS SPECTROM, V38, P996, DOI 10.1002/jms.517
  12. Carvalho VH, 2018, REDOX BIOL, V18, P222, DOI 10.1016/j.redox.2018.07.009
  13. Chai P, 1996, J EXP BIOL, V199, P2285
  14. CHRISTMAN AA, 1976, INT J BIOCHEM, V7, P519, DOI 10.1016/0020-711X(76)90055-0
  15. Clifford WM, 1921, BIOCHEM J, V15, P725, DOI 10.1042/bj0150725
  16. CRUSH KG, 1970, COMP BIOCHEM PHYSIOL, V34, P3, DOI 10.1016/0010-406X(70)90049-6
  17. DAVEY CL, 1960, ARCH BIOCHEM BIOPHYS, V89, P303, DOI 10.1016/0003-9861(60)90059-X
  18. De Marchis S, 2000, BIOCHEMISTRY-MOSCOW+, V65, P824
  19. del Favero S, 2012, AMINO ACIDS, V43, P49, DOI 10.1007/s00726-011-1190-x
  20. Dobrota D, 2005, NEUROCHEM RES, V30, P1283, DOI 10.1007/s11064-005-8799-7
  21. Dolan E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32636-3
  22. Dolan E, 2019, ADV NUTR, V10, P452, DOI 10.1093/advances/nmy115
  23. Dunnett M, 1997, RES VET SCI, V62, P213, DOI 10.1016/S0034-5288(97)90192-2
  24. Dunnett M, 1997, J CHROMATOGR B, V688, P47, DOI 10.1016/S0378-4347(97)88054-1
  25. Dutka TL, 2004, J MUSCLE RES CELL M, V25, P203, DOI 10.1023/B:JURE.0000038265.37022.c5
  26. ELLINGTON WR, 1989, J EXP BIOL, V143, P177
  27. Everaert I, 2011, AMINO ACIDS, V40, P1221, DOI 10.1007/s00726-010-0749-2
  28. FABIATO A, 1978, J PHYSIOL-LONDON, V276, P233, DOI 10.1113/jphysiol.1978.sp012231
  29. Figueira TR, 2013, ANTIOXID REDOX SIGN, V18, P2029, DOI 10.1089/ars.2012.4729
  30. Greenhaff PL, 2001, J PHYSIOL-LONDON, V537, P657
  31. GULEWITSCH W, BER DTSCH CHEM GES 2, V33, P1902
  32. Harris RC, 2012, AMINO ACIDS, V43, P5, DOI 10.1007/s00726-012-1233-y
  33. Harris RC, 1998, J SPORT SCI, V16, P639
  34. HARRIS RC, 1990, COMP BIOCHEM PHYS A, V97, P249, DOI 10.1016/0300-9629(90)90180-Z
  35. Harris RC, 2006, AMINO ACIDS, V30, P279, DOI 10.1007/s00726-006-0299-9
  36. Hill CA, 2007, AMINO ACIDS, V32, P225, DOI 10.1007/s00726-006-0364-4
  37. Hoetker D, 2018, J APPL PHYSIOL, V125, P1767, DOI 10.1152/japplphysiol.00007.2018
  38. Hoffman JR, 2017, AMINO ACIDS, V49, P871, DOI 10.1007/s00726-017-2383-8
  39. Hoffman JR, 2015, AMINO ACIDS, V47, P1247, DOI 10.1007/s00726-015-1952-y
  40. Jones G, 2011, P NUTR SOC, V70, pE363, DOI 10.1017/S0029665111004484
  41. Jones RS, 2016, CLIN PHARMACOL THER, V100, P454, DOI 10.1002/cpt.418
  42. Jubrias SA, 2003, J PHYSIOL-LONDON, V553, P589, DOI 10.1113/jphysiol.2003.045872
  43. Kendrick IP, 2009, EUR J APPL PHYSIOL, V106, P131, DOI 10.1007/s00421-009-0998-5
  44. KOHEN R, 1991, FREE RADICAL RES COM, V12-3, P179, DOI 10.3109/10715769109145784
  45. KOHEN R, 1988, P NATL ACAD SCI USA, V85, P3175, DOI 10.1073/pnas.85.9.3175
  46. KREBS HA, 1975, J EXP ZOOL, V194, P221, DOI 10.1002/jez.1401940115
  47. KROGH AUGUST, 1929, AMER JOUR PHYSIOL, V90, P243
  48. MARLIN DJ, 1989, COMP BIOCHEM PHYS A, V93, P629, DOI 10.1016/0300-9629(89)90023-6
  49. McCormack WP, 2013, EXP GERONTOL, V48, P933, DOI 10.1016/j.exger.2013.06.003
  50. Mellanby E, 1908, J PHYSIOL-LONDON, V36, P447
  51. ODOWD JJ, 1988, BIOCHIM BIOPHYS ACTA, V967, P241, DOI 10.1016/0304-4165(88)90015-3
  52. Painelli VD, 2018, MED SCI SPORT EXER, V50, P2242, DOI 10.1249/MSS.0000000000001697
  53. PAN JW, 1991, MAGNET RESON MED, V20, P57, DOI 10.1002/mrm.1910200107
  54. Peters V, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092751
  55. Peters V, 2015, AMINO ACIDS, V47, P2541, DOI 10.1007/s00726-015-2045-7
  56. Robergs RA, 2004, AM J PHYSIOL-REG I, V287, pR502, DOI 10.1152/ajpregu.00114.2004
  57. SAHLIN K, 1975, BIOCHEM J, V152, P173, DOI 10.1042/bj1520173
  58. SAHLIN K, 1984, ACTA PHYSIOL SCAND, V122, P331, DOI 10.1111/j.1748-1716.1984.tb07517.x
  59. SAHLIN K, 1976, PFLUG ARCH EUR J PHY, V367, P143, DOI 10.1007/BF00585150
  60. Sahlin K, 2011, AMINO ACIDS, V40, P1363, DOI 10.1007/s00726-011-0856-8
  61. Sale C, 2013, AMINO ACIDS, V44, P1477, DOI 10.1007/s00726-013-1476-2
  62. Saunders B, 2017, MED SCI SPORT EXER, V49, P896, DOI 10.1249/MSS.0000000000001173
  63. Saunders B, 2017, BRIT J SPORT MED, V51, P658, DOI 10.1136/bjsports-2016-096396
  64. SEWELL DA, 1992, J PHYSIOL-LONDON, V455, P447, DOI 10.1113/jphysiol.1992.sp019310
  65. Smith ECB, 1938, J PHYSIOL-LONDON, V92, P336, DOI 10.1113/jphysiol.1938.sp003605
  66. Spelnikov D, 2019, AMINO ACIDS, V51, P115, DOI 10.1007/s00726-018-2646-z
  67. SUAREZ RK, 1986, AM J PHYSIOL, V251, pR537
  68. Tallon MJ, 2007, BIOGERONTOLOGY, V8, P129, DOI 10.1007/s10522-006-9038-6
  69. TAMAKI N, 1977, J NUTR SCI VITAMINOL, V23, P319
  70. Thomas C, 2012, AM J PHYSIOL-REG I, V302, pR1, DOI 10.1152/ajpregu.00250.2011
  71. Warren DE, 2008, J COMP PHYSIOL B, V178, P133, DOI 10.1007/s00360-007-0212-1
  72. Xie ZZ, 2013, CHEM-BIOL INTERACT, V202, P288, DOI 10.1016/j.cbi.2012.12.017
  73. Yen WJ, 2002, J AM OIL CHEM SOC, V79, P329, DOI 10.1007/s11746-002-0483-9
  74. Zapp JA, 1938, J BIOL CHEM, V126, P9
  75. Zapp JA, 1938, J BIOL CHEM, V126, P19