The effect of frequency of activity interruptions in prolonged sitting on postprandial glucose metabolism: A randomized crossover trial

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2019
Editora
W B SAUNDERS CO-ELSEVIER INC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
THORSEN, Ida K.
JOHANSEN, Mette Y.
PILMARK, Nanna S.
JESPERSEN, Naja Z.
BRINKLOV, Cecilie F.
DUNSTAN, David W.
KARSTOFT, Kristian
PEDERSEN, Bente K.
RIED-LARSEN, Mathias
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
METABOLISM-CLINICAL AND EXPERIMENTAL, v.96, p.1-7, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: The primary objective was to test the hypothesis that increased frequency of interruptions in prolonged sitting reduces postprandial glycemia independent of energy intake and expenditure. Materials/Methods: Healthy, sedentary, centrally obese men (n = 14; age*, 28.2 (23.4; 38.3) years; BMI, 31.9 +/- 6.7 kg/m 2 ; VO(2)max*, 39.5 (38.8; 40.9) ml/min/kg; HbA1c, 53 +/- 0.4% (34.1 +/- 42 mmol/mol); mean +/- SD (*median (25th; 75th percentile)) completed four 8-h interventions in randomized order: 1) uninterrupted sitting (SIT), 2) sitting interrupted by 2 min of walking (-30% of VO2max) every 20th minute (INT20), 3) sitting interrupted by 6 min of walking every hour (INT60), and 4) sitting interrupted by 12 min of walking every second hour (INT120). A standardized test drink was served at the beginning of and 4 h into the intervention (total of 2310 +/- 247 kcal; 50% energy from carbohydrate, 50% energy from fat). Outcomes induded the difference in the 8-h total area under the curve (tAUC) for primarily plasma glucose, and secondarily plasma insulin and C-peptide during INT20, INT60, and INT120 compared to SIT. Results: No difference [95% CI] was observed in the primary outcome, the 8-h tAUC for the plasma glucose, during INT20, INT60, and INT120 compared to SIT ( -65.3 mmol/I*min [ - 256.3 ; 125.7], +53.8 mmol/l*min [ - 143.1; 250.8], and +18.6 mmol/l*min [-172.4; 209.6], respectively). Conclusions: Interrupting sitting with increasing frequency did not reduce the postprandial plasma glucose response to prolonged sitting in healthy, sedentary, centrally obese men.
Palavras-chave
Sedentary behavior, Walking, Cardiometabolic risk, Postprandial glucose metabolism, Postprandial lipid metabolism, Substrate oxidation
Referências
  1. Ainsworth BE, 2000, MED SCI SPORT EXER, V32, pS498, DOI 10.1097/00005768-200009001-00009
  2. Benatti FB, 2017, MED SCI SPORT EXER, V49, P2305, DOI 10.1249/MSS.0000000000001354
  3. Benatti FB, 2015, MED SCI SPORT EXER, V47, P2053, DOI 10.1249/MSS.0000000000000654
  4. Bergouignan A, 2016, SCI REP-UK, V6, DOI 10.1038/srep32044
  5. Biswas A, 2015, ANN INTERN MED, V162, P123, DOI 10.7326/M14-1651
  6. Cersosimo E, 2014, CURR DIABETES REV, V10, P2, DOI 10.2174/1573399810666140214093600
  7. Compher C, 2006, J AM DIET ASSOC, V106, P881, DOI 10.1016/j.jada.2006.02.009
  8. Dmitrienko A, 2018, NEW ENGL J MED, V378, P2115, DOI 10.1056/NEJMra1709701
  9. Dunstan DW, 2012, DIABETES CARE, V35, P976, DOI 10.2337/dc11-1931
  10. Edwardson CL, 2017, BMJ OPEN, V7, DOI 10.1136/bmjopen-2016-014267
  11. Ekelund U, 2016, LANCET, V388, P1302, DOI 10.1016/S0140-6736(16)30370-1
  12. Falconer CL, 2015, MED SCI SPORT EXER, V47, P2070, DOI 10.1249/MSS.0000000000000651
  13. FRAYN KN, 1983, J APPL PHYSIOL, V55, P628
  14. Hamilton MT, 2004, EXERC SPORT SCI REV, V32, P161
  15. Hawari NSA, 2016, MED SCI SPORT EXER, V48, P2495, DOI 10.1249/MSS.0000000000001034
  16. Healy GN, 2008, DIABETES CARE, V31, P661, DOI 10.2337/dc07-2046
  17. Healy GN, 2015, EUR HEART J, V36, P2643, DOI 10.1093/eurheartj/ehv308
  18. Healy GN, 2011, EUR HEART J, V32, P590, DOI 10.1093/eurheartj/ehq451
  19. Holmstrup M, 2014, METABOLISM, V63, P510, DOI 10.1016/j.metabol.2013.12.006
  20. Homer AR, 2017, J CLIN LIPIDOL, V11, P1268, DOI 10.1016/j.jacl.2017.06.007
  21. Jaworski K, 2007, AM J PHYSIOL-GASTR L, V293, pG1, DOI 10.1152/ajpgi.00554.2006
  22. Kahn SE, 2014, LANCET, V383, P1068, DOI 10.1016/S0140-6736(13)62154-6
  23. Karstoft K, 2017, FRONT ENDOCRINOL, V8, DOI 10.3389/fendo.2017.00132
  24. Kim IY, 2014, MED SCI SPORT EXER, V46, P1882, DOI 10.1249/MSS.0000000000000324
  25. Macdonald IA, 1996, DIABETIC MED, V13, pS11
  26. Miyashita M, 2016, INT J SPORTS MED, V37, P97, DOI 10.1055/s-0035-1559791
  27. Retnakaran R, 2008, OBESITY, V16, P1901, DOI 10.1038/oby.2008.307
  28. SHVARTZ E, 1990, AVIAT SPACE ENVIR MD, V61, P3
  29. Stephens BR, 2011, METABOLISM, V60, P941, DOI 10.1016/j.metabol.2010.08.014
  30. Thorp AA, 2014, MED SCI SPORT EXER, V46, P2053, DOI 10.1249/MSS.0000000000000337
  31. WEIR JBD, 1949, J PHYSIOL-LONDON, V109, P1
  32. YEH KC, 1978, J PHARMACOKINET BIOP, V6, P79, DOI 10.1007/BF01066064