Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/33429
Title: Tamoxifen and bone morphogenic protein-7 modulate fibrosis and inflammation in the peritoneal fibrosis model developed in uremic rats
Authors: SILVA, Filipe M. O.COSTALONGA, Elerson C.SILVA, CleoniceCARREIRA, Ana C. O.GOMES, Samirah A.SOGAYAR, Mari C.FANELLI, CamillaNORONHA, Irene L.
Citation: MOLECULAR MEDICINE, v.25, n.1, article ID UNSP 41, 18p, 2019
Abstract: Background Peritoneal fibrosis (PF) represents a long-term complication of peritoneal dialysis (PD), affecting peritoneal membrane (PM) integrity and function. Understanding the mechanisms underlying PF development in an uremic environment aiming alternative therapeutic strategies for treating this process is of great interest. The aim of this study was to analyze the effects of tamoxifen (TAM) and recombinant BMP7 (rBMP7) in an experimental model of PF developed in uremic rats. Methods To mimic the clinical situation of patients on long-term PD, a combo model, characterized by the combination of PF and CKD with severe uremia, was developed in Wistar rats. PF was induced by intraperitoneal (IP) injections of chlorhexidine gluconate (CG), and CKD was induced by an adenine-rich diet. Uremia was confirmed by severe hypertension, increased blood urea nitrogen (BUN> 120 mg/dL) and serum creatinine levels (> 2 mg/dL). Uremic rats with PF were treated with TAM (10 mg/Kg by gavage) or BMP7 (30 mu g/Kg, IP). Animals were followed up for 30 days. Results CG administration in uremic rats induced a striking increase in PM thickness, neoangiogenesis, demonstrated by increased capillary density, and failure of ultrafiltration capacity. These morphological and functional changes were blocked by TAM or rBMP7 treatment. In parallel, TAM and rBMP7 significantly ameliorated the PM fibrotic response by reducing alpha-SMA, extracellular matrix proteins and TGF-ss expression. TAM or rBMP7 administration significantly inhibited peritoneal Smad3 expression in uremic rats with PF, prevented Smad3 phosphorylation, and induced a remarkable up-regulation of Smad7, an intracellular inhibitor of TGF beta/Smad signaling, contributing to a negative modulation of profibrotic genes. Both treatments were also effective in reducing local inflammation, possibly by upregulating I kappa B-alpha expression in the PM of uremic rats with PF. In vitro experiments using primary peritoneal fibroblasts activated by TGF-ss confirmed the capacity of TAM or rBMP7 in blocking inflammatory mediators, such as IL-1 ss expression. Conclusions In conclusion, these findings indicate important roles of TGF-ss/Smad signaling in PF aggravated by uremia, providing data regarding potential therapeutic approaches with TAM or rBMP7 to block this process.
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MCM
Departamento de Clínica Médica - FM/MCM

Artigos e Materiais de Revistas Científicas - HC/ICESP
Instituto do Câncer do Estado de São Paulo - HC/ICESP

Artigos e Materiais de Revistas Científicas - HC/ICHC
Instituto Central - HC/ICHC

Artigos e Materiais de Revistas Científicas - LIM/29
LIM/29 - Laboratório de Nefrologia Celular, Genética e Molecular


Files in This Item:
File Description SizeFormat 
art_SILVA_Tamoxifen_and_bone_morphogenic_protein7_modulate_fibrosis_and_2019.PDFpublishedVersion (English)5.23 MBAdobe PDFThumbnail
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.