Integrated proteomics and metabolomics analysis reveals differential lipid metabolism in human umbilical vein endothelial cells under high and low shear stress

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2019
Editora
AMER PHYSIOLOGICAL SOC
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, v.317, n.2, p.C326-C338, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Atherosclerotic plaque development is closely associated with the hemodynamic forces applied to endothelial cells (ECs). Among these, shear stress (SS) plays a key role in disease development since changes in flow intensity and direction could stimulate an atheroprone or atheroprotective phenotype. ECs under low or oscillatory SS (LSS) show upregulation of inflammatory, adhesion, and cellular permeability molecules. On the contrary, cells under high or laminar SS (HSS) increase their expression of protective and anti-inflammatory factors. The mechanism behind SS regulation of an atheroprotective phenotype is not completely elucidated. Here we used proteomics and metabolomics to better understand the changes in endothelial cells (human umbilical vein endothelial cells) under in vitro LSS and HSS that promote an atheroprone or atheroprotective profile and how these modifications can be connected to atherosclerosis development. Our data showed that lipid metabolism, in special cholesterol metabolism, was downregulated in cells under LSS. The low-density lipoprotein receptor (LDLR) showed significant alterations both at the quantitative expression level as well as regarding posttranslational modifications. Under LSS, LDLR was seen at lower concentrations and with a different glycosylation profile. Finally, modulating LDLR with atorvastatin led to the recapitulation of a HSS metabolic phenotype in EC under LSS. Altogether. our data suggest that there is significant modulation of lipid metabolism in endothelial cells under different SS intensities and that this could contribute to the atheroprone phenotype of LSS. Statin treatment was able to partially recover the protective profile of these cells.
Palavras-chave
endothelial cell, lipids and lipoprotein metabolism, shear stress
Referências
  1. Ajami NE, 2017, P NATL ACAD SCI USA, V114, P10990, DOI 10.1073/pnas.1707517114
  2. Bailey KA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08417-9
  3. Bao XC, 2018, AM J PHYSIOL-LUNG C, V314, pL287, DOI 10.1152/ajplung.00520.2016
  4. Barauna VG, 2013, BIOCHEM BIOPH RES CO, V434, P647, DOI 10.1016/j.bbrc.2013.04.005
  5. Bassaneze V, 2010, STEM CELLS DEV, V19, P371, DOI 10.1089/scd.2009.0195
  6. Bendall SC, 2008, MOL CELL PROTEOMICS, V7, P1587, DOI 10.1074/mcp.M800113-MCP200
  7. Breuer K, 2013, NUCLEIC ACIDS RES, V41, pD1228, DOI 10.1093/nar/gks1147
  8. BROWN MS, 1983, ANNU REV BIOCHEM, V52, P223, DOI 10.1146/annurev.bi.52.070183.001255
  9. Butler PJ, 2001, AM J PHYSIOL-CELL PH, V280, pC962
  10. CARO CG, 1969, NATURE, V223, P1159, DOI 10.1038/2231159a0
  11. Chien S, 2007, AM J PHYSIOL-HEART C, V292, pH1209, DOI 10.1152/ajpheart.01047.2006
  12. Chistiakov DA, 2017, ACTA PHYSIOL, V219, P382, DOI 10.1111/apha.12725
  13. Chiu JJ, 2011, PHYSIOL REV, V91, P327, DOI 10.1152/physrev.00047.2009
  14. Cox J, 2009, NAT PROTOC, V4, P698, DOI 10.1038/nprot.2009.36
  15. CUMMINGS RD, 1983, J BIOL CHEM, V258, P5261
  16. DAVIES PF, 1995, PHYSIOL REV, V75, P519
  17. DAVIS CG, 1986, J BIOL CHEM, V261, P2828
  18. De Keulenaer GW, 1998, CIRC RES, V82, P1094, DOI 10.1161/01.RES.82.10.1094
  19. DEWEY CF, 1981, J BIOMECH ENG-T ASME, V103, P177, DOI 10.1115/1.3138276
  20. Dimmeler S, 1999, ARTERIOSCL THROM VAS, V19, P656, DOI 10.1161/01.ATV.19.3.656
  21. Endres M, 1998, P NATL ACAD SCI USA, V95, P8880, DOI 10.1073/pnas.95.15.8880
  22. Fan YB, 2017, J MOL CELL BIOL, V9, P352, DOI 10.1093/jmcb/mjx037
  23. Feng S, 2017, ARTERIOSCL THROM VAS, V37, P2087, DOI 10.1161/ATVBAHA.117.309249
  24. Ferraro JT, 2004, AM J PHYSIOL-CELL PH, V286, pC831, DOI 10.1152/ajpcell.00224.2003
  25. Finkelshtein D, 2013, P NATL ACAD SCI USA, V110, P7306, DOI 10.1073/pnas.1214441110
  26. Frank PG, 2003, ARTERIOSCL THROM VAS, V23, P1161, DOI 10.1161/01.ATV.0000070546.16946.3A
  27. Fu Y, 2011, CIRC RES, V108, P410, DOI 10.1161/CIRCRESAHA.110.230151
  28. Haug K, 2013, NUCLEIC ACIDS RES, V41, pD781, DOI 10.1093/nar/gks1004
  29. Helmke BP, 2000, CIRC RES, V86, P745, DOI 10.1161/01.RES.86.7.745
  30. Himburg HA, 2004, AM J PHYSIOL-HEART C, V286, pH1916, DOI 10.1152/ajpheart.00897.2003
  31. Hsieh HJ, 2014, J BIOMED SCI, V21, DOI 10.1186/1423-0127-21-3
  32. Jia XL, 2013, PFLUG ARCH EUR J PHY, V465, P221, DOI 10.1007/s00424-012-1182-z
  33. Jiu YM, 2015, CELL REP, V11, P1511, DOI 10.1016/j.celrep.2015.05.008
  34. KINGSLEY DM, 1986, CELL, V44, P749, DOI 10.1016/0092-8674(86)90841-X
  35. KOZARSKY K, 1988, P NATL ACAD SCI USA, V85, P4335, DOI 10.1073/pnas.85.12.4335
  36. Lanucara F, 2011, METHOD ENZYMOL, V500, P133, DOI 10.1016/B978-0-12-385118-5.00008-6
  37. Laufs U, 1998, J BIOL CHEM, V273, P24266, DOI 10.1074/jbc.273.37.24266
  38. Laufs U, 1998, CIRCULATION, V97, P1129, DOI 10.1161/01.CIR.97.12.1129
  39. Liu Y, 2002, ARTERIOSCL THROM VAS, V22, P76, DOI 10.1161/hq0102.101822
  40. Mi HY, 2016, NUCLEIC ACIDS RES, V44, pD336, DOI 10.1093/nar/gkv1194
  41. Mi HY, 2013, NAT PROTOC, V8, P1551, DOI 10.1038/nprot.2013.092
  42. Mohan S, 1997, AM J PHYSIOL-CELL PH, V273, pC572
  43. Molina S, 2007, J HEPATOL, V46, P411, DOI 10.1016/j.jhep.2006.09.024
  44. Mun GI, 2012, BIOCHEM BIOPH RES CO, V420, P450, DOI 10.1016/j.bbrc.2012.03.016
  45. Nagajyothi F, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0000953
  46. Nakajima H, 2017, CELL CYCLE, V16, P1893, DOI 10.1080/15384101.2017.1364324
  47. Novodvorsky P, 2014, PROG MOL BIOL TRANSL, V124, P155, DOI 10.1016/B978-0-12-386930-2.00007-0
  48. Olofsson S, 2005, ANN MED, V37, P154, DOI 10.1080/07853890510007340
  49. Ong SE, 2006, NAT PROTOC, V1, P2650, DOI 10.1038/nprot.2006.427
  50. Owen OE, 2002, J BIOL CHEM, V277, P30409, DOI 10.1074/jbc.R200006200
  51. Pahakis MY, 2007, BIOCHEM BIOPH RES CO, V355, P228, DOI 10.1016/j.bbrc.2007.01.137
  52. Pan LF, 2017, MOL MED REP, V16, P7205, DOI 10.3892/mmr.2017.7524
  53. Park H, 1998, J BIOL CHEM, V273, P32304, DOI 10.1074/jbc.273.48.32304
  54. Parmar KM, 2006, J CLIN INVEST, V116, P49, DOI 10.1172/JCI24787
  55. Pedersen NB, 2014, J BIOL CHEM, V289, P17312, DOI 10.1074/jbc.M113.545053
  56. Peng M, 2015, THESIS
  57. Sathanoori R, 2015, PURINERG SIGNAL, V11, P139, DOI 10.1007/s11302-014-9442-3
  58. SEGUCHI T, 1991, ARCH BIOCHEM BIOPHYS, V284, P245, DOI 10.1016/0003-9861(91)90292-Q
  59. Simmons RD, 2016, ARCH BIOCHEM BIOPHYS, V591, P111, DOI 10.1016/j.abb.2015.11.005
  60. Simons K, 2002, J CLIN INVEST, V110, P597, DOI 10.1172/JCI200216390
  61. Simons K, 2010, NAT REV MOL CELL BIO, V11, P688, DOI 10.1038/nrm2977
  62. Soulls JV, 2006, J BIOMECH, V39, P742, DOI 10.1016/j.jbiomech.2004.12.026
  63. SPRAGUE EA, 1987, CIRCULATION, V76, P648, DOI 10.1161/01.CIR.76.3.648
  64. Sun XL, 2016, P NATL ACAD SCI USA, V113, P769, DOI 10.1073/pnas.1524523113
  65. Szmitko PE, 2003, CIRCULATION, V108, P1917, DOI 10.1161/01.CIR.0000089190.95415.9F
  66. Tricot O, 2000, CIRCULATION, V101, P2450, DOI 10.1161/01.CIR.101.21.2450
  67. Tzima E, 2005, NATURE, V437, P426, DOI 10.1038/nature03952
  68. Uzarski JS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057004
  69. Vizcaino JA, 2016, NUCLEIC ACIDS RES, V44, pD447, DOI 10.1093/nar/gkv1145
  70. Wang TK, 2006, BBA-MOL CELL BIOL L, V1761, P1182, DOI 10.1016/j.bbalip.2006.08.009
  71. Wang YX, 2009, CELL MOL BIOENG, V2, P341, DOI 10.1007/s12195-009-0069-3
  72. Warboys Christina M, 2011, F1000 Med Rep, V3, P5, DOI 10.3410/M3-5
  73. Xia JG, 2015, NUCLEIC ACIDS RES, V43, pW251, DOI 10.1093/nar/gkv380
  74. Xia JG, 2015, NAT PROTOC, V10, P823, DOI 10.1038/nprot.2015.052
  75. Yamamoto K, 2015, AM J PHYSIOL-HEART C, V309, pH1178, DOI 10.1152/ajpheart.00241.2015
  76. YOSHIMURA A, 1987, J BIOL CHEM, V262, P13299
  77. Zhou J, 2013, J THROMB HAEMOST, V11, P741, DOI 10.1111/jth.12159