The clinical spectrum of the congenital myasthenic syndrome resulting from COL13A1 mutations

Carregando...
Imagem de Miniatura
Citações na Scopus
29
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
CRUZ, Pedro M. Rodriguez
COSSINS, Judith
MUNELL, Francina
SELBY, Kathryn
HIRANO, Michio
MAROOFIN, Reza
MEHRJARDI, Mohammad Yahya Vahidi
CHOW, Gabriel
CARR, Aisling
Citação
BRAIN, v.142, p.1547-1560, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Next generation sequencing techniques were recently used to show mutations in COL13A1 cause synaptic basal lamina-associated congenital myasthenic syndrome type 19. Animal studies showed COL13A1, a synaptic extracellular-matrix protein, is involved in the formation and maintenance of the neuromuscular synapse that appears independent of the Agrin-LRP4-MuSK-DOK7 acetylcholine receptor clustering pathway. Here, we report the phenotypic spectrum of 16 patients from 11 kinships harbouring homozygous or heteroallelic mutations in COL13A1. Clinical presentation was mostly at birth with hypotonia and breathing and feeding difficulties often requiring ventilation and artificial feeding. Respiratory crisis related to recurrent apnoeas, sometimes triggered by chest infections, were common early in life but resolved over time. The predominant pattern of muscle weakness included bilateral ptosis (non-fatigable in adulthood), myopathic facies and marked axial weakness, especially of neck flexion, while limb muscles were less involved. Other features included facial dysmorphism, skeletal abnormalities and mild learning difficulties. All patients tested had results consistent with abnormal neuromuscular transmission. Muscle biopsies were within normal limits or showed non-specific changes. Muscle MRI and serum creatine kinase levels were normal. In keeping with COL13A1 mutations affecting both synaptic structure and presynaptic function, treatment with 3,4-diaminopyridine and salbutamol resulted in motor and respiratory function improvement. In non-treated cases, disease severity and muscle strength improved gradually over time and several adults recovered normal muscle strength in the limbs. In summary, patients with COL13A1 mutations present mostly with severe early-onset myasthenic syndrome with feeding and breathing difficulties. Axial weakness is greater than limb weakness. Disease course improves gradually over time, which could be consistent with the less prominent role of COL13A1 once the neuromuscular junction is mature. This report emphasizes the role of collagens at the human muscle endplate and should facilitate the recognition of this disorder, which can benefit from pharmacological treatment.
Palavras-chave
congenital myasthenic syndromes, COL13A1, synaptic basal lamina, salbutamol, 3,4-diaminopyridine
Referências
  1. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  2. Belaya K, 2012, AM J HUM GENET, V91, P193, DOI 10.1016/j.ajhg.2012.05.022
  3. Clausen Lisa, 2018, J Neuromuscul Dis, V5, P231, DOI 10.3233/JND-170293
  4. Cossins J, 2013, BRAIN, V136, P944, DOI 10.1093/brain/awt010
  5. Cruz PMR, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061677
  6. D'Arcy CE, 2008, NEUROLOGY, V71, P776, DOI 10.1212/01.wnl.0000324929.33780.2f
  7. Desmet FO, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp215
  8. Dowling JJ, 2011, NEUROMUSCULAR DISORD, V21, P420, DOI 10.1016/j.nmd.2011.03.006
  9. Hagg P, 1998, J BIOL CHEM, V273, P15590, DOI 10.1074/jbc.273.25.15590
  10. Haronen H, 2017, HUM MOL GENET, V26, P2076, DOI 10.1093/hmg/ddx101
  11. KING JO, 1973, J PEDIATR-US, V83, P37, DOI 10.1016/S0022-3476(73)80309-9
  12. Latvanlehto A, 2010, J NEUROSCI, V30, P12230, DOI 10.1523/JNEUROSCI.5518-09.2010
  13. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  14. Logan CV, 2015, AM J HUM GENET, V97, P878, DOI 10.1016/j.ajhg.2015.10.017
  15. Mardy S, 1999, AM J HUM GENET, V64, P1570, DOI 10.1086/302422
  16. Maselli RA, 2009, J MED GENET, V46, P203, DOI 10.1136/jmg.2008.063693
  17. Maselli RA, 2017, AM J MED GENET A, V173, P2240, DOI 10.1002/ajmg.a.38291
  18. McMacken G, 2018, HUM MOL GENET, V27, P1556, DOI 10.1093/hmg/ddy062
  19. Muller JS, 2007, BRAIN, V130, P1497, DOI 10.1093/brain/awm068
  20. Nykvist P, 2000, J BIOL CHEM, V275, P8255, DOI 10.1074/jbc.275.11.8255
  21. Ohno K, 1998, P NATL ACAD SCI USA, V95, P9654, DOI 10.1073/pnas.95.16.9654
  22. Patton BL, 2003, J NEUROCYTOL, V32, P883, DOI 10.1023/B:NEUR.0000020630.74955.19
  23. Petryszak R, 2016, NUCLEIC ACIDS RES, V44, pD746, DOI 10.1093/nar/gkv1045
  24. PIHLAJANIEMI T, 1990, J BIOL CHEM, V265, P16922
  25. Raspall-Chaure M, 2005, REV NEUROLOGIA, V41, P218, DOI 10.33588/rn.4104.2005011
  26. Schaeffer L, 2001, NEURON, V31, P15, DOI 10.1016/S0896-6273(01)00353-1
  27. Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019]
  28. Schwarz JM, 2010, NAT METHODS, V7, P575, DOI 10.1038/nmeth0810-575
  29. Shi L, 2012, TRENDS NEUROSCI, V35, P441, DOI 10.1016/j.tins.2012.04.005
  30. Sim NL, 2012, NUCLEIC ACIDS RES, V40, pW452, DOI 10.1093/nar/gks539
  31. Taylor JC, 2015, NAT GENET, V47, P717, DOI 10.1038/ng.3304
  32. Tu HM, 2002, J BIOL CHEM, V277, P23092, DOI 10.1074/jbc.M107583200
  33. Uhlen M, 2015, SCIENCE, V347, DOI 10.1126/science.1260419
  34. Zainul Z, 2018, J NEUROSCI, V38, P4243, DOI 10.1523/JNEUROSCI.3119-17.2018
  35. Zerbino DR, 2018, NUCLEIC ACIDS RES, V46, pD754, DOI 10.1093/nar/gkx1098
  36. Zoltowska K, 2013, HUM MOL GENET, V22, P2905, DOI 10.1093/hmg/ddt145