Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
ROSS, Jacob A.
LEVY, Yotam
RIPOLONE, Michela
KOLB, Justin S.
TURMAINE, Mark
HOLT, Mark
LINDQVIST, Johan
CLAEYS, Kristl G.
WEIS, Joachim
MONFORTE, Mauro
Citação
ACTA NEUROPATHOLOGICA, v.138, n.3, Special Issue, p.477-495, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.
Palavras-chave
Skeletal muscle, Nemaline myopathy, Microtubules, Actin, Lamin, Nuclear envelope
Referências
  1. Auld AL, 2016, MOL BIOL CELL, V27, P2351, DOI 10.1091/mbc.E16-01-0021
  2. Baumann M, 2017, EUR J HUM GENET, V25, P262, DOI 10.1038/ejhg.2016.144
  3. Belanto JJ, 2014, P NATL ACAD SCI USA, V111, P5723, DOI 10.1073/pnas.1323842111
  4. Bruusgaard JC, 2006, J APPL PHYSIOL, V100, P2024, DOI 10.1152/japplphysiol.00913.2005
  5. Bruusgaard JC, 2003, J PHYSIOL-LONDON, V551, P467, DOI 10.1113/jphysiol.2003.045328
  6. Capetanaki Y, 1997, CELL STRUCT FUNCT, V22, P103, DOI 10.1247/csf.22.103
  7. Chan C, 2016, BBA-MOL BASIS DIS, V1862, P1453, DOI 10.1016/j.bbadis.2016.04.013
  8. Chapman MA, 2014, HUM MOL GENET, V23, P5879, DOI 10.1093/hmg/ddu310
  9. Cristea A, 2010, AGING CELL, V9, P685, DOI 10.1111/j.1474-9726.2010.00594.x
  10. D'Alessandro M, 2015, DEV CELL, V35, P186, DOI 10.1016/j.devcel.2015.09.018
  11. de Winter JM, 2016, ANN NEUROL, V79, P959, DOI 10.1002/ana.24654
  12. Delhaas T, 2013, ANAT REC, V296, P192, DOI 10.1002/ar.22631
  13. Falcone S, 2014, EMBO MOL MED, V6, P1455, DOI 10.15252/emmm.201404436
  14. Fidzianska A, 2003, J NEUROL SCI, V210, P47, DOI 10.1016/S0022-510X(03)00012-1
  15. Folker ES, 2014, DEVELOPMENT, V141, P355, DOI 10.1242/dev.095612
  16. Gimpel P, 2017, CURR BIOL, V27, P2999, DOI 10.1016/j.cub.2017.08.031
  17. Gnocchi VF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016651
  18. Gokhin DS, 2015, DEVELOPMENT, V142, P4351, DOI 10.1242/dev.129171
  19. Hetzer MW, 2010, ONLINE, V1411, P241
  20. Janin A, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01277
  21. Jungbluth H, 2018, NAT REV NEUROL, V14, P151, DOI 10.1038/nrneurol.2017.191
  22. Kerr JP, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9526
  23. Khairallah RJ, 2012, SCI SIGNAL, V5, DOI 10.1126/scisignal.2002829
  24. Kim JK, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14566
  25. Kirby TJ, 2016, MOL BIOL CELL, V27, P788, DOI 10.1091/mbc.E15-08-0585
  26. Krieger M, 2013, BRAIN, V136, P3634, DOI 10.1093/brain/awt283
  27. Lei K, 2009, P NATL ACAD SCI USA, V106, P10207, DOI 10.1073/pnas.0812037106
  28. Levy Y, 2018, JCI INSIGHT, V3, DOI 10.1172/jci.insight.120920
  29. Li F, 2015, HUM MOL GENET, V24, P5219, DOI 10.1093/hmg/ddv243
  30. Lindqvist J, 2016, ANN NEUROL, V79, P717, DOI 10.1002/ana.24619
  31. Lindqvist J, 2013, J NEUROPATH EXP NEUR, V72, P472, DOI 10.1097/NEN.0b013e318293b1cc
  32. Liu WH, 2014, CYTOSKELETON, V71, P230, DOI 10.1002/cm.21166
  33. Meinke P, 2015, FEBS LETT, V589, P2514, DOI 10.1016/j.febslet.2015.06.011
  34. Meinke P, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004605
  35. Metzger T, 2012, NATURE, V484, P120, DOI 10.1038/nature10914
  36. Monforte M, 2018, J NEUROL, V265, P542, DOI 10.1007/s00415-018-8741-y
  37. Nguyen MAT, 2011, BRAIN, V134, P3513, DOI 10.1093/brain/awr274
  38. Nilipour Y, 2018, EUR J NEUROL, V25, P841, DOI 10.1111/ene.13607
  39. O'Rourke AR, 2018, FEBS J, V285, P481, DOI 10.1111/febs.14367
  40. Ochala J, 2015, J STRUCT BIOL, V192, P331, DOI 10.1016/j.jsb.2015.09.008
  41. Ochala J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045923
  42. Ochala J, 2012, HUM MOL GENET, V21, P4473, DOI 10.1093/hmg/dds289
  43. Prins KW, 2011, J CELL SCI, V124, P951, DOI 10.1242/jcs.079848
  44. Ravel-Chapuis A, 2007, EMBO J, V26, P1117, DOI 10.1038/sj.emboj.7601572
  45. Roman W, 2017, NAT CELL BIOL
  46. Roos A, 2014, ACTA NEUROPATHOL, V127, P761, DOI 10.1007/s00401-013-1224-4
  47. Ross JA, 2018, J CELL PHYSL
  48. Ross J, 2012, STEM CELLS, V30, P2330, DOI 10.1002/stem.1197
  49. Ross JA, 2017, J CELL PHYSIOL, V232, P1270, DOI 10.1002/jcp.25678
  50. Rybakova IN, 2000, J CELL BIOL, V150, P1209, DOI 10.1083/jcb.150.5.1209
  51. Sanoudou D, 2003, P NATL ACAD SCI USA, V100, P4666, DOI 10.1073/pnas.0330960100
  52. Scharner J, 2011, HUM MUTAT, V32, P152, DOI 10.1002/humu.21361
  53. Schnitzler LJ, 2017, ORPHANET J RARE DIS, V12, DOI 10.1186/s13023-017-0640-2
  54. Sebastien M, 2018, SKELET MUSCLE, V8, DOI 10.1186/s13395-018-0176-8
  55. Sewry CA, 2001, NEUROPATH APPL NEURO, V27, P281, DOI 10.1046/j.0305-1846.2001.00323.x
  56. Sonnemann KJ, 2006, DEV CELL, V11, P387, DOI 10.1016/j.devcel.2006.07.001
  57. Stroud MJ, 2017, J CELL BIOL, V216, P1915, DOI 10.1083/jcb.201612128
  58. Tajik A, 2016, NAT MATER, V15, P1287, DOI [10.1038/nmat4729, 10.1038/NMAT4729]
  59. Tinklenberg J, 2016, AM J PATHOL, V186, P1568, DOI 10.1016/j.ajpath.2016.02.008
  60. Tonino P, 2010, J CELL SCI, V123, P384, DOI 10.1242/jcs.042234
  61. Van der Meer SFT, 2011, J MUSCULOSKEL NEURON, V11, P286
  62. WALLIN M, 1995, INT REV CYTOL, V157, P1, DOI 10.1016/S0074-7696(08)62155-5
  63. Webster M, 2009, J CELL SCI, V122, P1477, DOI 10.1242/jcs.037333
  64. Zhang XC, 2007, DEVELOPMENT, V134, P901, DOI 10.1242/dev.02783