LOXL3 Function Beyond Amino Oxidase and Role in Pathologies, Including Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
20
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.20, n.14, article ID 3587, 14p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Lysyl oxidase like 3 (LOXL3) is a copper-dependent amine oxidase responsible for the crosslinking of collagen and elastin in the extracellular matrix. LOXL3 belongs to a family including other members: LOX, LOXL1, LOXL2, and LOXL4. Autosomal recessive mutations are rare and described in patients with Stickler syndrome, early-onset myopia and non-syndromic cleft palate. Along with an essential function in embryonic development, multiple biological functions have been attributed to LOXL3 in various pathologies related to amino oxidase activity. Additionally, various novel roles have been described for LOXL3, such as the oxidation of fibronectin in myotendinous junction formation, and of deacetylation and deacetylimination activities of STAT3 to control of inflammatory response. In tumors, three distinct roles were described: (1) LOXL3 interacts with SNAIL and contributes to proliferation and metastasis by inducing epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells; (2) LOXL3 is localized predominantly in the nucleus associated with invasion and poor gastric cancer prognosis; (3) LOXL3 interacts with proteins involved in DNA stability and mitosis completion, contributing to melanoma progression and sustained proliferation. Here we review the structure, function and activity of LOXL3 in normal and pathological conditions and discuss the potential of LOXL3 as a therapeutic target in various diseases.
Palavras-chave
LOXL3, lysyl oxidase, collagen, development, disease, cancer
Referências
  1. Aguet F, 2017, NATURE, V550, P204, DOI 10.1038/nature24277
  2. Alzahrani F, 2015, HUM GENET, V134, P451, DOI 10.1007/s00439-015-1531-z
  3. Asuncion L, 2001, MATRIX BIOL, V20, P487, DOI 10.1016/S0945-053X(01)00161-5
  4. Aumiller V, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00270-0
  5. Barbazan J, 2014, INT J CANCER, V135, P2633, DOI 10.1002/ijc.28910
  6. Barker HE, 2012, NAT REV CANCER, V12, P540, DOI 10.1038/nrc3319
  7. Chan TK, 2019, CLIN GENET, V95, P325, DOI 10.1111/cge.13465
  8. Chen LJ, 2019, J DRUG TARGET, V27, P790, DOI [10.1080/1061186X.2018.1550649, 10.1080/02652048.2018.1467510]
  9. Dudakova L, 2016, HISTOL HISTOPATHOL, V31, P63, DOI 10.14670/HH-11-649
  10. Dufresne J, 2018, CLIN PROTEOM, V15, DOI 10.1186/s12014-018-9215-z
  11. Eiseler T, 2012, J BIOL CHEM, V287, P32367, DOI 10.1074/jbc.M112.370999
  12. Hajdu I, 2018, BIOORG MED CHEM LETT, V28, P3113, DOI 10.1016/j.bmcl.2018.07.001
  13. Huang Y, 2001, MATRIX BIOL, V20, P153, DOI 10.1016/S0945-053X(01)00124-X
  14. Huang ZM, 2016, OSTEOARTHR CARTILAGE, V24, P1246, DOI 10.1016/j.joca.2016.02.009
  15. Jeong C, 2017, INT J MOL MED, V39, P719, DOI 10.3892/ijmm.2017.2862
  16. Jeong YJ, 2018, ONCOL LETT, V15, P2431, DOI 10.3892/ol.2017.7617
  17. Jones MG, 2018, ELIFE, V7, DOI 10.7554/eLife.36354
  18. Jourdan-Le Saux C, 2001, GENOMICS, V74, P211, DOI 10.1006/geno.2001.6545
  19. Kasashima H, 2018, DIGESTION, V98, P238, DOI 10.1159/000489558
  20. Khan MFJ, 2018, CONGENIT ANOM, V58, P136, DOI 10.1111/cga.12288
  21. Kraft-Sheleg O, 2016, DEV CELL, V36, P550, DOI 10.1016/j.devcel.2016.02.009
  22. Lee J, 2006, J BIOL CHEM, V281, P33554, DOI 10.1074/jbc.M603937200
  23. Li JL, 2016, MOL VIS, V22, P161
  24. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  25. Ma L, 2017, MOL CELL, V65, P296, DOI 10.1016/j.molcel.2016.12.002
  26. Maki JM, 2001, BIOCHEM J, V355, P381, DOI 10.1042/0264-6021:3550381
  27. Mayorca-Guiliani A, 2013, ONCOTARGETS THER, V6, P1729, DOI 10.2147/OTT.S38110
  28. Mele M, 2015, SCIENCE, V348, P660, DOI 10.1126/science.aaa0355
  29. Nave AH, 2014, ARTERIOSCL THROM VAS, V34, P1446, DOI 10.1161/ATVBAHA.114.303534
  30. Nishioka T, 2012, CELL STRUCT FUNCT, V37, P75, DOI 10.1247/csf.11015
  31. Panchenko MV, 1996, J BIOL CHEM, V271, P7113, DOI 10.1074/jbc.271.12.7113
  32. Peinado H, 2005, EMBO J, V24, P3446, DOI 10.1038/sj.emboj.7600781
  33. Philp CJ, 2018, AM J RESP CELL MOL, V58, P594, DOI 10.1165/rcmb.2016-0379OC
  34. Remus EW, 2012, AM J PHYSIOL-HEART C, V303, pH1067, DOI 10.1152/ajpheart.00217.2012
  35. Santamaria PG, 2018, CELL DEATH DIFFER, V25, P935, DOI 10.1038/s41418-017-0030-2
  36. Sato T, 2006, ARTHRITIS RHEUM-US, V54, P808, DOI 10.1002/art.21638
  37. Schilter H, 2019, J CELL MOL MED, V23, P1759, DOI 10.1111/jcmm.14074
  38. Sebban S, 2009, VIRCHOWS ARCH, V454, P71, DOI 10.1007/s00428-008-0694-6
  39. Sethi A, 2011, INVEST OPHTH VIS SCI, V52, P5240, DOI 10.1167/iovs.11-7287
  40. Tadmor T, 2013, AM J HEMATOL, V88, P355, DOI 10.1002/ajh.23409
  41. Uzel MI, 2001, J BIOL CHEM, V276, P22537, DOI 10.1074/jbc.M102352200
  42. van Boxtel AL, 2011, MATRIX BIOL, V30, P178, DOI 10.1016/j.matbio.2010.12.002
  43. Insua YV, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18061265
  44. Yu QL, 2006, HYPERTENSION, V48, P98, DOI 10.1161/01.HYP.0000227247.27111.B2
  45. Yu QL, 2010, MATRIX BIOL, V29, P511, DOI 10.1016/j.matbio.2010.06.003
  46. Zhang J, 2016, SCI REP-UK, V6, DOI 10.1038/srep33856
  47. Zhang J, 2015, HUM MOL GENET, V24, P6174, DOI 10.1093/hmg/ddv333
  48. Zhou LN, 2013, ACTA BIOCH BIOPH SIN, V45, P674, DOI 10.1093/abbs/gmt056