MicroRNAs fingerprint of bicuspid aortic valve

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
SABATINO, Jolanda
ROSA, Salvatore De
EYILETEN, Ceren
JAKUBIK, Daniel
SPACCAROTELLA, Carmen
MONGIARDO, Annalisa
POSTULA, Marek
INDOLFI, Ciro
Citação
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, v.134, p.98-106, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aortic valve tissue is largely exposed to high blood flow. Cells belonging to aortic valve tissues are able to detect and respond to flow conditions changes. Bicuspid aortic valve (BAV) presents altered morphology, with only two abnormal cusps instead of three. This results in an alteration of blood flow dynamics on valve cusps and aortic wall, which may, in turn, increase the risk to develop aortic stenosis and/or regurgitation, endocarditis, aortopathy and/or aortic dissection. MicroRNAs (miRNAs) are short RNA strands regulating gene expression mainly through the inhibition of their target mRNAs. They are largely involved in cardiovascular pathophysiology and heart disease. More recently, it has been observed that the expression of specific miRNAs can be modulated in response to changes in hemodynamic conditions. Using a bioinformatic approach, this article analyses available scientific evidence about the differential expression of miRNAs in the bicuspid aortic valve, with a focus on the differential modulation compared to the calcific-degenerative tricuspid aortic valve.
Palavras-chave
microRNAs, Flow, Shear stress, Bicuspid aortic valve
Referências
  1. Albinsson S, 2017, HEART VESSELS, V32, P750, DOI 10.1007/s00380-016-0942-7
  2. Ando H, 1999, AM J PHYSIOL-HEART C, V276, pH1755
  3. Carino A, 2016, BIOMED RES INT, DOI 10.1155/2016/3968206
  4. Chen ZF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088744
  5. Cirillo P, 2007, J VASC RES, V44, P460, DOI 10.1159/000106464
  6. Coffey S, 2016, SCI REP-UK, V6, DOI [10.1038/srep.36904, 10.1038/srep36904]
  7. Coffey S, 2015, J AM HEART ASSOC, V4, DOI 10.1161/JAHA.115.002150
  8. Curcio A, 2011, CIRC J, V75, P1287, DOI 10.1253/circj.CJ-11-0366
  9. de Kerchove Laurent, 2019, Eur J Cardiothorac Surg, DOI 10.1093/ejcts/ezz033
  10. De Rosa R, 2017, AM J CARDIOL, V120, P15, DOI 10.1016/j.amjcard.2017.03.264
  11. De Rosa S, 2015, EXPERIENTIA SUPPL, V106, P139, DOI 10.1007/978-3-0348-0955-9_6
  12. De Rosa S, 2014, CIRC J, V78, P567, DOI 10.1253/circj.CJ-14-0086
  13. De Rosa S, 2011, CIRCULATION, V124, P1936, DOI 10.1161/CIRCULATIONAHA.111.037572
  14. De Rosa S, 2009, J VASC RES, V46, P609, DOI 10.1159/000226229
  15. Di Ieva A, 2014, NEUROSURGERY, V75, P181, DOI 10.1227/NEU.0000000000000369
  16. Doncheva NT, 2019, J PROTEOME RES, V18, P623, DOI 10.1021/acs.jproteome.8b00702
  17. Du JJ, 2017, CELL PHYSIOL BIOCHEM, V44, P884, DOI 10.1159/000485356
  18. Durinck S, 2009, NAT PROTOC, V4, P1184, DOI 10.1038/nprot.2009.97
  19. El-Hamamsy I, 2009, NAT REV CARDIOL, V6, P771, DOI 10.1038/nrcardio.2009.191
  20. Eyileten C., 2018, CELLS, V7, DOI [10.3390/cells7120249, DOI 10.3390/CE11S7120249]
  21. Fang L, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0672-0
  22. Freeman RV, 2005, CIRCULATION, V111, P3316, DOI 10.1161/CIRCULATIONAHA.104.486738
  23. Gallo A, 2018, INT J CARDIOL, V273, P230, DOI 10.1016/j.ijcard.2018.10.005
  24. Garcia R, 2013, J AM HEART ASSOC, V2, DOI 10.1161/JAHA.113.000211
  25. Gareri C, 2017, J MOL BIOL, V429, P1817, DOI 10.1016/j.jmb.2017.05.008
  26. Gareri C, 2016, CIRC RES, V118, P1170, DOI 10.1161/CIRCRESAHA.115.308237
  27. Girdauskas E, 2018, INTERACT CARDIOV TH, V27, P60, DOI 10.1093/icvts/ivy033
  28. Heath JM, 2018, CARDIOVASC ENG TECHN, V9, P141, DOI 10.1007/s13239-017-0296-z
  29. Holliday CJ, 2011, AM J PHYSIOL-HEART C, V301, pH856, DOI 10.1152/ajpheart.00117.2011
  30. Iaconetti C, 2016, PHYSIOLOGY, V31, P16, DOI 10.1152/physiol.00029.2015
  31. Iaconetti C, 2015, CARDIOVASC RES, V107, P522, DOI 10.1093/cvr/cvv141
  32. Li XF, 2016, AM J TRANSL RES, V8, P5773
  33. Liu DG, 2017, HORTIC RES-ENGLAND, V4, P1, DOI 10.1038/hortres.2017.31
  34. Liu TS, 2019, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01921
  35. Martinez-Micaelo N, 2017, J TRANSL MED, V15, DOI 10.1186/s12967-017-1176-x
  36. Masri A, 2017, HEART, V103, P1323, DOI 10.1136/heartjnl-2016-309916
  37. Mi HY, 2017, NUCLEIC ACIDS RES, V45, pD183, DOI 10.1093/nar/gkw1138
  38. Mohler ER, 2004, AM J CARDIOL, V94, P1396, DOI 10.1016/j.amjcard.2004.08.013
  39. Nader Joseph, 2017, J Heart Valve Dis, V26, P327
  40. Nigam V, 2010, J HEART VALVE DIS, V19, P459
  41. Novo G, 2011, CURR DRUG TARGETS, V12, P115, DOI 10.2174/138945011793591545
  42. Ohukainen P, 2015, ANN MED, V47, P423, DOI 10.3109/07853890.2015.1059955
  43. OLSSON M, 1994, J AM COLL CARDIOL, V23, P1162, DOI 10.1016/0735-1097(94)90606-8
  44. Palasca O, 2018, DATABASE-OXFORD, DOI 10.1093/database/bay003
  45. Patel V, 2015, FASEB J, V29, P1859, DOI 10.1096/fj.14-257808
  46. Polimeni A, 2013, TRENDS CARDIOVAS MED, V23, P9, DOI 10.1016/j.tcm.2012.08.004
  47. Pordzik J, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00074
  48. Rathan S, 2016, SCI REP-UK, V6, DOI 10.1038/srep25397
  49. Ru YB, 2014, NUCLEIC ACIDS RES, V42, DOI 10.1093/nar/gku631
  50. Rutsch F, 2011, CIRC RES, V109, P578, DOI 10.1161/CIRCRESAHA.111.247965
  51. Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
  52. Shi J, 2016, BIOMED RES INT, DOI 10.1155/2016/4682172
  53. Simmons CA, 2005, CIRC RES, V96, P792, DOI 10.1161/01.RES.0000161998.92009.64
  54. Simmons CA, 2004, ANN BIOMED ENG, V32, P1453, DOI 10.1114/B:ABME.0000042360.57960.2b
  55. Song R, 2017, J AM HEART ASSOC, V6, DOI 10.1161/JAHA.116.005364
  56. Spaccarotella C, 2017, INT J CARDIOL, V243, P161, DOI 10.1016/j.ijcard.2017.04.107
  57. Sucosky P, 2009, ARTERIOSCL THROM VAS, V29, P254, DOI 10.1161/ATVBAHA.108.176347
  58. Sun XH, 2014, CIRC RES, V114, P32, DOI 10.1161/CIRCRESAHA.113.302089
  59. Sun XH, 2012, J CLIN INVEST, V122, P1973, DOI 10.1172/JCI61495
  60. Szklarczyk D, 2017, NUCLEIC ACIDS RES, V45, pD362, DOI 10.1093/nar/gkw937
  61. Tarbell JM, 2014, ANNU REV FLUID MECH, V46, P591, DOI 10.1146/annurev-fluid-010313-141309
  62. Thiene G, 2006, CARDIOVASC PATHOL, V15, P256, DOI 10.1016/j.carpath.2006.05.009
  63. van Rooij E, 2008, CIRC RES, V103, P919, DOI 10.1161/CIRCRESAHA.108.183426
  64. Villar AV, 2011, HEART, V97, P1132, DOI 10.1136/hrt.2010.220418
  65. Wan GX, 2019, CARDIOVASC TOXICOL, V19, P264, DOI 10.1007/s12012-018-9495-6
  66. Wang H, 2017, BIOMED RES INT, DOI 10.1155/2017/4820275
  67. Wang LT, 2017, SCI REP-UK, V7, DOI 10.1038/srep45917
  68. Wang Y, 2018, BIOSCIENCE REP, V38, DOI 10.1042/BSR20180448
  69. Xie N, 2019, J CELL BIOCHEM, V120, P5790, DOI 10.1002/jcb.27865
  70. Xu HX, 2017, CLIN LAB, V63, P1163, DOI 10.7754/Clin.Lab.2017.170108
  71. Yanagawa B, 2012, J THORAC CARDIOV SUR, V144, P256, DOI 10.1016/j.jtcvs.2011.10.097
  72. Yang JL, 2016, SCI REP-UK, V6, DOI 10.1038/srep19384
  73. Zakkar M, 2016, CURR VASC PHARMACOL, V14, P181, DOI 10.2174/1570161114666151202205139
  74. Zhang M, 2014, J THORAC CARDIOV SUR, V147, P1073, DOI 10.1016/j.jtcvs.2013.05.011
  75. Zheng DD, 2019, CLIN RES CARDIOL, V108, P691, DOI 10.1007/s00392-018-1398-9
  76. Zhu JJ, 2017, P NATL ACAD SCI USA, V114, P8271, DOI 10.1073/pnas.1700561114