Enlarged anterior cranial fossa and restricted posterior cranial fossa, the disproportionate growth of basicranium in Crouzon syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2019
Editora
CHURCHILL LIVINGSTONE
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
LU, Xiaona
FORTE, Antonio Jorge
STEINBACHER, Derek M.
ALPEROVICH, Michael
PERSING, John A.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, v.47, n.9, p.1426-1435, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Crouzon syndrome patients develop normal intracranial volume and potential restricted posterior cranial fossa volume with growth. This study aims to trace the segmental anterior, middle and posterior cranial fossae volume, and structural morphology in these patients, in order to help discern more focused and individualized surgical treatment plan. Ninety-two preoperative CT scans (Crouzon, n = 36; control, n = 56) were included, and divided into 5 age related subgroups. CT scans were measured using Mimics and 3-matics software. Overall, Crouzon syndrome patients grew to a 27% (p = 0.011) increased anterior cranial fossa volume and a 20% (p = 0.001) decreased posterior cranial fossa volume, with normal middle cranial fossa and entire intracranial volume measurement. The posterior cranial fossa of Crouzon syndrome initially developed significantly reduced volume (19%, p = 0.032), compared to normals, from 6 months of age, and remained reduced thereafter. The 7.63 mm shortening of posterior cranial fossa length contributed most to the shortened entire cranial length (9.30 mm, p = 0.046). Although the entire cranial volume of Crouzon syndrome is normal overall, the segmental anterior, middle and posterior cranial fossae developed disproportionately. The early significant and lifelong restricted posterior cranial fossa addresses the importance of early posterior cranial expansion. Ideally expansion would have vectors in all three dimensions. (C) 2019 Published by Elsevier Ltd on behalf of European Association for Cranio-Maxillo-Facial Surgery.
Palavras-chave
Crouzon syndrome, Anterior fossa, Posterior fossa, Intracranial volume, Morphology
Referências
  1. Abbott AH, 2000, J CRANIOFAC SURG, V11, P211, DOI 10.1097/00001665-200011030-00002
  2. Bauder Andrew R, 2015, Plast Reconstr Surg, V136, P52, DOI 10.1097/01.prs.0000472342.36900.c7
  3. Blount JP, 2007, CHILD NERV SYST, V23, P1103, DOI 10.1007/s00381-007-0362-1
  4. Bristol Ruth E, 2004, Semin Pediatr Neurol, V11, P262, DOI 10.1016/j.spen.2004.11.001
  5. BURDI AR, 1986, CLEFT PALATE J, V23, P28
  6. Cai CQ, 2008, INT CONF BIOMED, P591, DOI 10.1109/BMEI.2008.73
  7. Calandrelli R, 2016, CHILD NERV SYST, V32, P451, DOI 10.1007/s00381-015-2956-3
  8. Calandrelli R, 2014, NEURORADIOLOGY, V56, P865, DOI 10.1007/s00234-014-1392-5
  9. CARINCI F, 1994, CLEFT PALATE-CRAN J, V31, P201, DOI 10.1597/1545-1569(1994)031<0201:CSCAAE>2.3.CO;2
  10. Choi M, 2012, J CRANIOFAC SURG, V23, P455, DOI 10.1097/SCS.0b013e318240ff49
  11. Coll G, 2016, NEUROSURGERY, V79, P722, DOI 10.1227/NEU.0000000000001309
  12. de Jong T, 2012, CHILD NERV SYST, V28, P137, DOI 10.1007/s00381-011-1614-7
  13. DEKABAN AS, 1977, ANN NEUROL, V2, P485, DOI 10.1002/ana.410020607
  14. Fearon JA, 2017, PLAST RECONSTR SURG, V140
  15. Fernandes YB, 2016, ARQ NEURO-PSIQUIAT, V74, P405, DOI 10.1590/0004-282X20160041
  16. FOK H, 1992, BRIT J PLAST SURG, V45, P394, DOI 10.1016/0007-1226(92)90013-N
  17. Francesco Carinci, 2005, APERT CROUZON SYNDRO
  18. Gault D T, 1990, J Craniofac Surg, V1, P1, DOI 10.1097/00001665-199001000-00003
  19. GAULT DT, 1992, PLAST RECONSTR SURG, V90, P377, DOI 10.1097/00006534-199209000-00003
  20. GRAYSON BH, 1985, CLEFT PALATE J, V22, P75
  21. HOFFMAN HJ, 1976, CHILD BRAIN, V2, P167
  22. Iqbal Showkathali, 2017, Asian J Neurosurg, V12, P428, DOI 10.4103/1793-5482.175627
  23. Kanodia G, 2012, J NEUROSCI RURAL PRA, V3, P261, DOI 10.4103/0976-3147.102602
  24. KREIBORG S, 1993, J CRANIO MAXILL SURG, V21, P181, DOI 10.1016/S1010-5182(05)80478-0
  25. KREIBORG S, 1982, SCAND J PLAST RECONS, V16, P245, DOI 10.3109/02844318209026215
  26. KREIBORG S, 1981, SCAND J PLAST RECONS, V15, P187, DOI 10.3109/02844318109103433
  27. Lee SS, 2010, PLAST RECONSTR SURG, V126, P187, DOI 10.1097/PRS.0b013e3181dab5be
  28. Lu X, 2019, PLAST RECONSTR SURG
  29. Lu Xiaona, 2019, J Craniofac Surg, DOI 10.1097/SCS.0000000000005396
  30. MATRAS H, 1977, J MAXILLOFAC SURG, V5, P298, DOI 10.1016/S0301-0503(77)80122-7
  31. MOSS MELVIN L., 1959, ACTA ANAT, V37, P351
  32. Naran S, 2017, J CRANIOFAC SURG, V28, P2030, DOI 10.1097/SCS.0000000000003888
  33. PETERSONFALZONE SJ, 1981, CLEFT PALATE J, V18, P237
  34. POSNICK JC, 1995, PLAST RECONSTR SURG, V96, P539, DOI 10.1097/00006534-199509000-00004
  35. RENIER D, 1982, J NEUROSURG, V57, P370, DOI 10.3171/jns.1982.57.3.0370
  36. Rijken BFM, 2015, J CRANIO MAXILL SURG, V43, P813, DOI 10.1016/j.jcms.2015.04.001
  37. Runyan CM, 2017, PLAST RECONSTR SURG, V140, p434E, DOI 10.1097/PRS.0000000000003586
  38. Senda D, 2019, J CRANIOFAC SURG, V30, P23, DOI 10.1097/SCS.0000000000004948
  39. Serlo WS, 2011, CHILD NERV SYST, V27, P627, DOI 10.1007/s00381-010-1353-1
  40. Sgouros S, 1999, J NEUROSURG, V91, P610, DOI 10.3171/jns.1999.91.4.0610
  41. Tokumaru AM, 1996, AM J NEURORADIOL, V17, P619