Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers

Carregando...
Imagem de Miniatura
Citações na Scopus
32
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
KACHURI, Linda
SAARELA, Olli
BOJESEN, Stig Egil
SMITH, George Davey
LIU, Geoffrey
LANDI, Maria Teresa
CAPORASO, Neil E.
CHRISTIANI, David C.
JOHANSSON, Mattias
PANICO, Salvatore
Citação
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, v.48, n.3, p.751-766, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Evidence from observational studies of telomere length (TL) has been conflicting regarding its direction of association with cancer risk. We investigated the causal relevance of TL for lung and head and neck cancers using Mendelian Randomization (MR) and mediation analyses. Methods: We developed a novel genetic instrument for TL in chromosome 5p15.33, using variants identified through deep-sequencing, that were genotyped in 2051 cancer-free subjects. Next, we conducted an MR analysis of lung (16 396 cases, 13 013 controls) and head and neck cancer (4415 cases, 5013 controls) using eight genetic instruments for TL. Lastly, the 5p15.33 instrument and distinct 5p15.33 lung cancer risk loci were evaluated using two-sample mediation analysis, to quantify their direct and indirect, telomere-mediated, effects. Results: The multi-allelic 5p15.33 instrument explained 1.49-2.00% of TL variation in our data (p = 2.6 x 10(-9)). The MR analysis estimated that a 1000 base-pair increase in TL increases risk of lung cancer [odds ratio (OR) = 1.41, 95% confidence interval (CI): 1.20-1.65] and lung adenocarcinoma (OR = 1.92, 95% CI: 1.51-2.22), but not squamous lung carcinoma (OR = 1.04, 95% CI: 0.83-1.29) or head and neck cancers (OR = 0.90, 95% CI: 0.70-1.05). Mediation analysis of the 5p15.33 instrument indicated an absence of direct effects on lung cancer risk (OR = 1.00, 95% CI: 0.95-1.04). Analysis of distinct 5p15.33 susceptibility variants estimated that TL mediates up to 40% of the observed associations with lung cancer risk. Conclusions: Our findings support a causal role for long telomeres in lung cancer aetiology, particularly for adenocarcinoma, and demonstrate that telomere maintenance partially mediates the lung cancer susceptibility conferred by 5p15.33 loci.
Palavras-chave
lung cancer, telomere length, chromosome 5p15.33, Mendelian Randomization, mediation analysis, TERT
Referências
  1. Amos CI, 2017, CANCER EPIDEM BIOMAR, V26, P126, DOI 10.1158/1055-9965.EPI-16-0106
  2. Bau DT, 2013, CANCER-AM CANCER SOC, V119, P4277, DOI 10.1002/cncr.28367
  3. Benitez-Buelga C, 2015, BREAST CANCER RES TR, V149, P385, DOI 10.1007/s10549-014-3246-6
  4. de Jesus BB, 2013, TRENDS GENET, V29, P513, DOI 10.1016/j.tig.2013.06.007
  5. BLACKBURN EH, 1991, NATURE, V350, P569, DOI 10.1038/350569a0
  6. Bodnar AG, 1998, SCIENCE, V279, P349, DOI 10.1126/science.279.5349.349
  7. Bojesen SE, 2013, J INTERN MED, V274, P399, DOI 10.1111/joim.12083
  8. Bojesen SE, 2013, NAT GENET, V45, P371, DOI 10.1038/ng.2566
  9. Borah S, 2015, SCIENCE, V347, P1006, DOI 10.1126/science.1260200
  10. Bowden J, 2016, GENET EPIDEMIOL, V40, P304, DOI 10.1002/gepi.21965
  11. Brennan P, 2011, LANCET ONCOL, V12, P399, DOI 10.1016/S1470-2045(10)70126-1
  12. Bull CF, 2014, CANCER PREV RES, V7, P128, DOI 10.1158/1940-6207.CAPR-13-0264
  13. Burgess S, 2013, GENET EPIDEMIOL, V37, P658, DOI 10.1002/gepi.21758
  14. Burgess S, 2013, INT J EPIDEMIOL, V42, P1134, DOI 10.1093/ije/dyt093
  15. Carreras-Torres R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177875
  16. Codd V, 2013, NAT GENET, V45, P422, DOI 10.1038/ng.2528
  17. Couraud S, 2012, EUR J CANCER, V48, P1299, DOI 10.1016/j.ejca.2012.03.007
  18. Daniali L, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2602
  19. Davey Smith G, 2014, HUM MOL GENET, V23, pR89, DOI 10.1093/hmg/ddu328
  20. de Lange T, 2002, ONCOGENE, V21, P532, DOI 10.1038/sj.onc.1205080
  21. de Martel C, 2017, INT J CANCER, V141, P664, DOI 10.1002/ijc.30716
  22. Dimitrakopoulou VI, 2017, BMJ-BRIT MED J, V359, DOI 10.1136/bmj.j4761
  23. Fingerlin TE, 2013, NAT GENET, V45, P613, DOI 10.1038/ng.2609
  24. Friedrich U, 2000, MECH AGEING DEV, V119, P89, DOI 10.1016/S0047-6374(00)00173-1
  25. Gillison ML, 2015, J CLIN ONCOL, V33, P3235, DOI 10.1200/JCO.2015.61.6995
  26. Gu YY, 2016, SCI REP-UK, V6, DOI 10.1038/srep20675
  27. Gudmundsson J, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001513
  28. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  29. Hartwig FP, 2017, JAMA PSYCHIAT, V74, P1226, DOI 10.1001/jamapsychiatry.2017.3191
  30. Hartwig FP, 2017, INT J EPIDEMIOL, V46, P1985, DOI 10.1093/ije/dyx102
  31. Haycock PC, 2017, JAMA ONCOL, V3, P636, DOI 10.1001/jamaoncol.2016.5945
  32. Haycock PC, 2016, AM J CLIN NUTR, V103, P965, DOI 10.3945/ajcn.115.118216
  33. Hohensinner PJ, 2011, AGING DIS, V2, P524
  34. Huzen J, 2014, J INTERN MED, V275, P155, DOI 10.1111/joim.12149
  35. Jang JS, 2008, CANCER SCI, V99, P1385, DOI 10.1111/j.1349-7006.2008.00831.x
  36. Kachuri L, 2016, CARCINOGENESIS, V37, P96, DOI 10.1093/carcin/bgv165
  37. Kamatani Y, 2010, NAT GENET, V42, P210, DOI 10.1038/ng.531
  38. Lan Q, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059230
  39. Lesseur C, 2016, NAT GENET, V48, P1544, DOI 10.1038/ng.3685
  40. Levy D, 2010, P NATL ACAD SCI USA, V107, P9293, DOI 10.1073/pnas.0911494107
  41. Li P, 2012, INT J BIOCHEM CELL B, V44, P1531, DOI 10.1016/j.biocel.2012.06.020
  42. Li YF, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-0965-1
  43. Liu ZS, 2011, CANCER EPIDEM BIOMAR, V20, P2642, DOI 10.1158/1055-9965.EPI-11-0890
  44. Low KC, 2013, TRENDS BIOCHEM SCI, V38, P426, DOI 10.1016/j.tibs.2013.07.001
  45. Mangino M, 2012, HUM MOL GENET, V21, P5385, DOI 10.1093/hmg/dds382
  46. Martinez P, 2009, GENE DEV, V23, P2060, DOI 10.1101/gad.543509
  47. McKay JD, 2017, NAT GENET, V49, P1126, DOI 10.1038/ng.3892
  48. McKay JD, 2008, NAT GENET, V40, P1404, DOI 10.1038/ng.254
  49. Newbold RF, 2002, MUTAGENESIS, V17, P539, DOI 10.1093/mutage/17.6.539
  50. Pai SI, 2009, ANNU REV PATHOL-MECH, V4, P49, DOI 10.1146/annurev.pathol.4.110807.092158
  51. Pande M, 2011, CARCINOGENESIS, V32, P1493, DOI 10.1093/carcin/bgr136
  52. Pierce BL, 2011, INT J EPIDEMIOL, V40, P740, DOI 10.1093/ije/dyq151
  53. Pooley KA, 2013, HUM MOL GENET, V22, P5056, DOI 10.1093/hmg/ddt355
  54. Prescott J, 2012, MUTAT RES-FUND MOL M, V730, P75, DOI 10.1016/j.mrfmmm.2011.06.009
  55. Prescott J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019635
  56. Rafnar T, 2009, NAT GENET, V41, P221, DOI 10.1038/ng.296
  57. Richmond RC, 2016, HUM MOL GENET, V25, pR149, DOI 10.1093/hmg/ddw197
  58. Rivera T, 2017, NAT STRUCT MOL BIOL, V24, P30, DOI 10.1038/nsmb.3335
  59. Rode L, 2016, INT J EPIDEMIOL, V45, P1634, DOI 10.1093/ije/dyw179
  60. Saferali A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095600
  61. Samet JM, 2009, CLIN CANCER RES, V15, P5626, DOI 10.1158/1078-0432.CCR-09-0376
  62. Sanchez-Espiridion B, 2014, CANCER RES, V74, P2476, DOI 10.1158/0008-5472.CAN-13-2968
  63. Seow WJ, 2014, CANCER RES, V74, P4090, DOI 10.1158/0008-5472.CAN-14-0459
  64. Shay JW, 1997, EUR J CANCER, V33, P787, DOI 10.1016/S0959-8049(97)00062-2
  65. Shen M, 2011, LUNG CANCER, V73, P133, DOI 10.1016/j.lungcan.2010.11.009
  66. Sun B, 2015, LUNG CANCER, V88, P297, DOI 10.1016/j.lungcan.2015.03.011
  67. Swanson SA, 2017, EPIDEMIOLOGY, V28, P653, DOI 10.1097/EDE.0000000000000699
  68. Thompson JR, 2005, STAT MED, V24, P2241, DOI 10.1002/sim.2100
  69. Valeri L, 2013, PSYCHOL METHODS, V18, P137, DOI 10.1037/a0031034
  70. VanderWeele T., 2015, EXPLANATION CAUSAL I
  71. VanderWeele TJ, 2014, EPIDEMIOLOGY, V25, P427, DOI 10.1097/EDE.0000000000000081
  72. VanderWeele TJ, 2013, EPIDEMIOLOGY, V24, P224, DOI 10.1097/EDE.0b013e318281a64e
  73. Von Zglinicki T, 2000, ANN NY ACAD SCI, V908, P99, DOI 10.1111/j.1749-6632.2000.tb06639.x
  74. Wang ZM, 2014, HUM MOL GENET, V23, P6616, DOI 10.1093/hmg/ddu363
  75. Weischer M, 2012, ARTERIOSCL THROM VAS, V32, P822, DOI 10.1161/ATVBAHA.111.237271
  76. Wentzensen IM, 2011, CANCER EPIDEM BIOMAR, V20, P1238, DOI 10.1158/1055-9965.EPI-11-0005
  77. Wu XF, 2003, J NATL CANCER I, V95, P1211, DOI 10.1093/jnci/djg011
  78. Wu YH, 2018, CANCER EPIDEM BIOMAR, V27, P75, DOI [10.1158/1055-9965.EPI-17-0516, 10.1158/1055-9965.epi-17-0516]
  79. Zhang CA, 2015, HUM MOL GENET, V24, P5356, DOI 10.1093/hmg/ddv252
  80. Zhang Y, 2013, CANCER RES, V73, P5996, DOI 10.1158/0008-5472.CAN-13-0881
  81. Zhao Y, 2009, CELL, V138, P463, DOI 10.1016/j.cell.2009.05.026
  82. Zheng YL, 2014, CELL CYCLE, V13, DOI 10.4161/cc.28705
  83. Zhu X, 2016, SCI REP-UK, V6, DOI 10.1038/srep22243